How to find the future products?

3D printing is a promise for radical new concepts, products and functionalities that have never existed before. Unfortunately only less than 1% of us can imagine truly new things. We are mostly copying and variating earlier ideas.

So how can we find the truly new products and future-proof solutions ? Here are some strategies for this.

Innovation can take place at component or system level. The novelty can be considered by the impact it has (incremental, radical).

Figure 1. Dimensions of innovation by Joe Tidd.


In this article we talk about exploration for new products that are made possible by 3D printing. Exploration is the activity when the organisation seeks future product directions and opportunities.

Grounded vs. disruptive exploration

Grounded exploration emphasizes systematic development and logical improvements to products. Disruptive exploration is based on “soft” and creative practises, such as pure creativity, allowing unexpected combinations, and taking higher risks. Grounded exploration may be more common in established engineering companies and disruptive exploration in agile start-up companies.

There are always more options than can be explored and implemented. It is difficult to know which direction to take and where the markets and competition will be. The explorer is in similar situation as an astronomer trying to see distant stars – it is difficult to see far due to distance or other disturbing factors (Figure 2).

In grounded exploration the designer sets first the criteria for exploration and then studies the opportunities. In disruptive exploration the criteria for new products are set later when the opportunities are perceived.

Figure 2. The problem of identifying the right opportunities

Logical vs. non-logical

Logical approaches lead to predictable innovations and can be deducted by looking at the premises, user needs, competition and technology advances. Example activities:

  • Extend and improve the products to predictable directions, for example based on user feedback.
  • Update the applied design tools and technologies.
  • Change the product strategy according to user or business needs.
  • Apply user-centred development processes.
  • React to competition.

Non-logical approaches lead to ideas and innovations that are not obvious by looking at existing knowledge or premises. Non-logical approaches emphasize designers’ ideas, inspiration and unexpected technology combinations. The areas explored can be in conflict with the results from logical thinking. Example activities:

  • Extend the concepts or features to non-predictable directions
  • Try unknown or unproven solutions.
  • Challenge the knowledge from market research.

Target oriented vs. open ended

Target oriented approaches aim to fulfill a pre-defined goal, such as certain features, market share, price, design or customer need. The activities as a whole establish an exploration ”lense”. The pre-defined goal is the focal point for the lense. Example activities

  • Explore only ideas that support strategic (primary) goals
  • Fix errors.
  • Add features.
  • React to feedback.
  • Design for synergies across features

Figure 3. Target oriented exploration


Open ended approaches. In this approach the mission is simply to find new, without pre-defined limitations and with minimal guidance. Existing opportunities and unexpected findings are seen as “lenses” that lead the exploration towards undefined goal. The target comes visible when different combinations are tried and studied. By applying ”lenses” at different situations during exploration, different objects and possibilities come visible. Examples

  • Explore with non-strategic (secondary) goals
  • Maximize the generation of new ideas and combinations of ideas. Focus on quantity rather than quality.
  • Make design perspectives (Where we are heading?) and take perspectives (Where are we now?)

Figure 4. Exploring the unknown with opportunities

Rational vs. irrational

Rational approaches look to directions and solutions that make sense and can be justified with business goals, expertise, or data. This approach is similar to logical approach, but the emphasis is in “common sense” and intuitition – “We know there is something”. Team’s expertise and quiet knowledge play important role.
The concept of gravitational lenses clarifies the situation: you have observations indicating that something is behind the obstacles, but currently you can observe and explore only second hand indications. Examples activities:

  • Extend the ideas with known and justified use cases and ratioanl details
  • Assume emergence of certain trend, technology, customer need or user behaviour
  • Ignore some known limitations, uncertainties and risks, but with a good reason

Figure 5. Gravitational lense. A gravitational lense is formed when the light from a very distant, bright source (such as a quasar) is ”bent” around a massive object (such as a cluster of galaxies) between the source object and the observer. Souce: Wikipedia

Irrational approaches emphasize ideas that stem from non-rational user needs or simply playing with available technology and design options. Although people are capable of rational thinking they very often act irrationally or have irrational needs. For example, market research may reveal expectations or latent needs that can’t be explained by rational analysis.
For example, explore solutions that emphasize ”beauty”, “joy”, “happiness”, “showing off” that are difficult to explore, model and manage with rational mindset. This approach requires high degree of creativity and freedom, good modeling tools, but still proper understanding of the doable vs. not-doable elements. For example:

  • Apply irrational (not justified, not predicted by theory, not logical) elements in the ideas, such as playfulness and “wov”. Consider also very short lifetime vs long lifetime of a product idea, since these lead to different concepts.
  • Work with artists, people with creative talents, lead users, etc.
  • Explore beliefs, religions and other non-scientific areas that guide people’s behaviour and markets.

Incremental vs empirical

Incremental approach aims to add new elements into existing products and systems, i.e it studies what is missing part. Incremental exploration is maybe the easiest and safest option to go, but will not contribute to a new product strategy. In this approach we accept also negative increments, i.e. changing the concepts by removing existing elements.

Figure 6. Incremental approach

Examples:

  • Which functions / elements could be added to existing products and systems?
  • Which functions / elements could be removed from existing products and concepts?
  • Which features could be combined or integrated?

Empirical approach

Empirical or new-creating approach aims to define fully new strategy or direction for product innovation and concepts. The work of a designer resembles the work of an artist who applies different kinds of methods, technologies and techniques in a flexible manner in a process of appreciation, action and re-appreciation, constantly reflecting on his own work. The empirical approach designers rarely follow the methodology prescribed by normative theories.

Figure 7. Empirical approach

Examples:

  • What could be created from the given elements?
  • Which new user functions, features or designs could be proposed?
  • Focus on outliers! Outliers are ideas and concepts that seem not to fit with ”proper” ideas and are not compatible with the mainstream solutions.

Strategies for exploration

We can’t directly see to the future. It would be nice if we could. The future is hidden beyond time, trends, technology advancement and unexpected events. Fortunately we can see signs of the future everywhere around us, such as megatrends, trends, silent signals, outliers and research results. Astronomers have similar problem when they try to see galaxies and black holes that hide behind massive systems in space.

Here are four strategies to apply when identifying the opportunities for future products or systems.

1. Lenses to future

Use exploration ”lenses” as descibed in the sections above. Try to see the new opportunities and accept unexpected findings.

2. Wind Approach

Imagine you try top navigate straight from west to east and there is strong north wind. In order to reach the destination you actually need to aim to north east. This gives a different route and new parameters for the exploration.

The Wind Approach is a method for product innovators seeking future product ideas by embracing the unexpected and venturing into uncharted territories. Inspired by the way a navigator adjusts their course when faced with adverse winds, this approach challenges traditional thinking and encourages innovative solutions to emerge. By intentionally deviating from the conventional path, the Wind Approach opens up new dimensions of exploration and unlocks a plethora of exciting possibilities.

Methodology:

  1. Defining the Destination: Start by identifying the overarching goal, problem or product idea you aim to solve. This represents the ”destination” you want to reach through innovation.
  2. Mapping the Traditional Route: In the absence of any constraints or challenges, chart out the most straightforward route to your destination. This represents the conventional approach to innovation.
  3. Identifying the Wind: Introduce a disruptive element or constraint that mimics the strong north wind in the analogy. This could be a limitation, a constraint, an opposing trend, or an unconventional perspective.
  4. Adjusting the Course: Just as a navigator adjusts their course to navigate around the wind, deliberately deviate from the traditional path. In response to the introduced constraint, pivot your perspective and consider alternative directions.
  5. Finding the North East: Instead of simply overcoming the constraint, use it as a guide to explore new destination, new routes and dimensions. Like aiming for the north east in the face of a north wind, seek out unconventional ideas and opportunities that arise from accommodating the constraint.
  6. Exploring New Parameters: The Wind Approach prompts you to redefine the parameters of your innovation exploration. As you navigate around constraints, you might discover unexpected intersections between ideas, designs, materials, industries, or technologies. This can lead to the creation of entirely new product concepts.

Possibilities and Benefits:

  • Divergent Thinking: The Wind Approach fosters divergent thinking by pushing innovator to question assumptions and break free from linear thought patterns. This can lead to solutions that might not have been considered otherwise.
  • Cross-Disciplinary Insights: Embracing constraints can open doors to collaborating with experts from diverse fields. The process of navigating constraints often involves borrowing insights and techniques from unexpected sources, fostering cross-disciplinary innovation.
  • Unique Value Propositions: By embracing challenges and constraints, you can arrive at product ideas with unique value propositions. These ideas might solve problems in ways that resonate deeply with users or disrupt established markets.
  • Innovative Problem-Solving: The Wind Approach encourages creative problem-solving, as the need to circumvent constraints can lead to elegant and unexpected solutions.
  • Market Differentiation: Products conceived through the Wind Approach are likely to stand out in the market due to their unconventional nature. This differentiation can lead to stronger market positioning and a competitive edge.
  • Innovation Mindset: Continuously applying the Wind Approach can cultivate an innovation mindset within teams and organizations. It encourages a culture of adaptability, resilience, and open-mindedness.

3. DreamForge approach

DreamForge is a design methodology that harnesses the power of AI-based image generators, or any other system that amplifies the exploration space digitally, to create visually stunning and highly intricate product concepts. Unlike traditional design processes that rely solely on human creativity and constraints, DreamForge taps into the limitless potential of AI to generate products that transcend the boundaries of reality. This methodology leverages advanced machine learning algorithms to produce designs that are rich in complexity, detail, and innovation.

Figure 8. Product exploration with DreamForge. Image by Midjourney.

Key Steps:

  • AI Training: The DreamForge methodology begins with training AI models on an extensive dataset of existing 3D designs, art, and various visual inspirations. This enables the AI to learn patterns, styles, and artistic elements. This step is not always needed, since generative AI:s may have sufficient data already in place.
  • Creative Seed: Users provide a basic idea or concept as a creative seed to guide the AI’s initial design generation process. This seed could be a vague description, a set of keywords, or even an abstract image.
  • AI Design Generation: The AI takes the creative seed and generates a diverse array of design concepts. These concepts can be wildly imaginative, incorporating elements that human designers might never conceive.
  • Iteration and Refinement: Users review the generated designs and select the ones that resonate with their vision. They can provide feedback to the AI, which then refines subsequent design iterations.
  • Customization: Users have the option to customize and fine-tune the selected design, adjusting specific details, scales, and features to align with their preferences.

Benefits of DreamForge:

  • Unbounded Creativity: DreamForge unleashes a new level of creativity by producing designs that defy conventional boundaries. AI-generated designs introduce novel shapes, patterns, and aesthetics that push the limits of imagination.
  • Efficiency and Speed: Traditional design processes can be time-consuming and iterative. DreamForge accelerates the design phase by rapidly generating a multitude of unique concepts, expediting the creative journey.
  • Intricate Detailing: The AI’s ability to incorporate millions of intricate details and nuances results in designs that possess a depth of complexity that would be nearly impossible for a human designer to envision.
  • Idea Exploration: DreamForge is a powerful tool for exploring design ideas that may have been overlooked or deemed unfeasible. Users can visualize concepts they might not have considered otherwise.
  • Personalization: Users can inject their personal preferences into the design, ensuring that the final product reflects their unique style and taste.
  • Innovation Catalyst: DreamForge serves as a catalyst for innovation, inspiring designers, artists, and creators to break free from conventions and explore uncharted territories of design.

4. VisioForesight approach

VisioForesight approach is a scenario planning method that helps explorers anticipate and navigate a range of potential product futures. By crafting detailed stories of plausible yet diverse outcomes, scenario planning empowers decision-makers to be proactive, adaptable, and ready for whatever product opportunities tomorrow may bring.

Methodology

  1. Define X and Y Axes: In the context of business scenarios, the X and Y axes often represent two key dimensions or variables that influence the scenarios. Similarly, in the context of product exploration, you could define two axes that capture essential aspects of the product. These axes could be factors like ”Functionality” and ”Aesthetics,” ”Complexity” and ”Simplicity,” or any other relevant pair of attributes.
  2. Explore the Four Fields: Once you’ve defined your axes, you can divide your scenario map into four quadrants, each representing a distinct combination of attributes. For example:
    • Quadrant I: High Functionality, High Aesthetics
    • Quadrant II: High Functionality, Low Aesthetics
    • Quadrant III: Low Functionality, High Aesthetics
    • Quadrant IV: Low Functionality, Low Aesthetics
  3. Applying this Approach to Product Exploration: Let’s say you’re designing a smart medical device. You could use the axes ”Innovative Features” and ”User-Friendly Design” to create your scenario map:
    • Quadrant I: Device with Cutting-Edge Features and Intuitive User Interface
    • Quadrant II: Feature-Rich Device with Complex User Interface
    • Quadrant III: Visually Stunning Device with Simplified Features
    • Quadrant IV: Basic Device with Limited Features and Usability
  4. Benefits: Structured Exploration: This approach provides a structured framework for brainstorming and exploring different product ideas based on specific attributes or dimensions.
  5. Idea Generation: By systematically exploring each quadrant, you ensure that you consider a wide range of possibilities and avoid overlooking potential ideas.
  6. Evaluation Criteria: The scenario map offers a way to evaluate and prioritize ideas based on the attributes represented by the axes. This can help in aligning product ideas with your overall design goals.
  7. Visual Representation: The scenario map provides a visual representation of the product landscape, making it easier to communicate and collaborate with team members and stakeholders.
  8. Informed Decision-Making: By mapping out different scenarios, you can make more informed decisions about which quadrant aligns best with your target audience, market trends, and business objectives.
  9. Holistic Approach: Considering both functional and aesthetic aspects ensures a holistic approach to product design, leading to products that not only perform well but also engage users visually.
  10. Diverse Range of Ideas: By changing the attributes on the axes, you can adapt the scenario map to different products and explore a wide range of design possibilities.

Conclusion

There are many avenues for finding future products. Some require systematic work and some are based on imagination. Maybe the best results are achieved by hybrid approaches, where both aspects are applied.

This article is a preview to a wider work that brings new tools to the creators of future products, especially to support the imagination challenge of 3D printing. Stay tuned!

All comments and feedback are highly appreciated!

Pekka Ketola, August 28, 2023

The sport of 3D printing

3D printing has become a standard tool for athletes. It can be used to improve ergonomy and performance in traditional sports, and to enable sports and exercising for paralympic athletes and hobbyists, in the first place

3D printing was widely present in both Tokyo Olympic games 2021 and Tokyo Paralympics 2021. Applications were seen in numerous sports and also in olympic arrangements.

Some Tokyo 2021 examples below:

Olympics

  • Olympic rings were 3D printed from recycled plastic bottles. The bottles were crowdsourced from the city.
  • 3D printing was widely applied in athletes’ footwear. Most medalists had 3D printed insoles.
  • 3D printed custom pistol grip improved eronomy and accuracy (Celine Goberville).
  • 3D printing was applied in developing innovative racing bike solutions for the Great Britain Cycling Team.

Paralympics

  • 3D printing was used to improve grip and ergonomy in special gloves, for example for wheelchair racing.
  • Bike pedal structures were designed and 3D printed to match the individual needs of athletes.
  • Custom fit crank arms and and grips were 3D printed for racing wheelchairs.
  • Para-athletes with missing fingers, for example, had 3D printed accessories (Taymon Kenton-Smith).

Comprehensive list of 3D printing examples in professional sports during the past years would be very long. It is obvious that sports is great innovation platform for 3D printing. I’m excited to see the new solutions in Paris 2024.

Extreme personalization

The atheletes need to persistently optimize their performance and anticipate the details of forthcoming competition. 3D printing can often be part of the solution. The solution must exactly fit with the athelete’s needs at a specific point of time for extreme performance. For example, a sudden injury may change the need rapidly.

Solutions are created with skilled teams where the athlete is key person in the collaborative design team. Ideas can be copied from elsewhere, but the final product is always fine tuned solution, based on innovation, data, design, production, iteration and testing.

Reaching the best possible quality is a fundamental requirement. Sometimes the solution needs to be available in couple of hours, for example as unexpected need for a spare part. The team needs to perform and be ready for solving tricky problems.

Translation to normal life

Athletes are forerunners in finding ways how 3D printing can serve us all. Solutions developed for top performance can be translated to wider uses, in the same way as Formula1 developers create innovations that are applied in car and other industries, such as aerodynamics and carbon fibre technology.

In my vision, Olympic 3D printing innovations will translate, for example, in

  • Developing fast and high quality idea-to-implementation processes
  • Enabling tasks that were earlier impossible for individuals
  • Developing task specific tools and accessories for wide range of professions
  • Solving problems related to ergonomy and occupational health
  • Creating cost efficient solutions for accessibility
  • Innovative uses of emerging 3D printing materials
  • Design innovations
  • Developing functional products.

Are you interested to collaborate on developing sports inspired solutions with the help of 3D printing? Let’s talk!

Links

Why (the idea of) freedom of design matters?

People who don’t know too much think that with 3D printing you can create almost anything, and that there is complete freedom of design for practitioners. People who know too much tell us this is not true. Which point is more valuable?

I studied for my master’s thesis ~1990s. My major was computer science. Only at the end of the studies it became possible and economically feasible to have an own computer at home! At that time, nobody (except some visionary gurus) really believed that computers would one day be everywhere in our lives. But we had the emerging idea that something like that might happen.

In my first job as designer we were developing the first Nokia communicator with the idea that Internet would be in everybody’s pocket. Hah! We hardly had functional Internet on the planet. The idea of everybody having a mobile phone was crazy. Not to mention the possibility of having Internet in the mobile phone, available for online surfing everywhere. But we had the vision driving the development. Quite soon we sent the first ever email from a mobile phone.

Now and then we see phenoma that inspire global thinking in masses. 3D printing is such thinking platform! The sole idea of 3D printing may be more valuable than the technological reality today. It empowers millions of people to safely envision about the biggest opportunity of new level of manufacturing and products. To think about what might be possible, even when you don’t know enough about the technology. Dreaming is the most powerful innovation tool.

Thinking platforms are needed to collaboratively understand or dream of what might be possible, and then go for it. It is crucial to be able to safely and creatively produce knowledge about the possible future. It is motivating for all disciplines to set goals that seem to be impossible to reach even with sufficient resourcing. With great goals humans can achieve the impossible.

Disruptions have tendency to come unnoticed and quietly. And 3D printing is next on the line for global disruption. It generates a number of related opportunity avenues, such as materials innovation, logistics, business models and design methods.

It really doesn’t really matter if freedom of design is entirely true today. It matters that we have the inspiring possibility to think about the new design space and to develop wild ideas. Most of the dreams will realize at some point of the time.

Pekka Ketola Jan. 22nd, 2020

3D printing and the team skills

3D printing and the digital development processes will change the team dynamics and establish new ways to work. In this article I will discuss some of the emerging patterns.

  1. Collaboration. Collaborative design proposes that products are designed together with the users. Collaborative product or service development is not new concept. The idea is in the heart of established practises, such as user centered design, usability engineering and service design. 3D printing is based on the affordance that products can be designed and manufactured faster with personalized features. It makes sense to consider new kinds of collaborative teams where customers, end users and the engineering team work together to exploit the affordances and user input in full. When the design and manufacturing cycles are fast and flexible there is possibility to
    1. Create more design iterations.
    2. Make more product prototypes and variations without major cost or time impact.
    3. Develop the product with users and customers in fast development cycles.
  2. Prototyping. ”Prototypes are super expensive”. This is not (always) true with 3D printing. The step from CAD file to first concrete product is short. Making changes in the prototype or simulation is far less expensive than making changes in the final product. With 3D printed prototypes, it is often possible to make the first versions almost with zero cost using inexpensive FDM technology, before proceeding to the actual implementation and materials, such as titanium. The teams need to learn to apply active prototyping and maximise the support and experiences the prototypes can provide for design and customers. There is also the marketing aspect for using and showing the prototypes already in the early phases of the design process.
  3. Role of purchasing. All larger manufacturing companies have dedicated teams for purchasing stuff needed for the main business, such as components and materials. As purchasing manager, what do you buy when you buy 3D printed components or digital spare parts? The question is often about fast on-demand manufacturing, with customer specific twists in the products. The purchasing teams need to develop skills to play with additive manufacturing platforms and services, rather than buying, lets say 10 000 units of component X. Or is there a fast shortcut between product development teams and 3D printing services? Accordingly, 3D printing services need to figure out what are the new processes and connections needed to serve the big customers.
  4. New design processes. Sustainability, circular economy, recycling, on-demand parts and other emerging phenomena ask for better design and manufacturing processes, with new requirements coming from the society and customers. For example, how do you:
    1. Design for 3D printable spare parts (already in the original product)
    2. Design for recycling
    3. Design for personalization

The concept of product design need to raise to the new level, where designer solves also the problems and needs that will come at the end of the product lifecycle. This is rarely handled in contemporary product development.

Conclusion

3D printing is not only about technology, processes and materials. It is also about the new hard and soft skills and behaviours needed in teams. Collaborative product development or the idea of super active prototyping are competences that need to be exercised, piloted and tried out.

What do you think?

Pekka Ketola, CEO 3DStep Oy

3D printing and the customer insights. Case: Car Industry & spare parts

3D printing has opened wonderful opportunities for collaboration between customer and the company. This dialogue is useful and creates value for all. It is no wonder that companies like Local Motors, Volkswagen and Shapeways take community management and co-development with 3D printing seriously.

Car industry has found maybe the largest number of 3D printing applications. It has also managed to connect users, engineers and the industry in innovative ways. However, there are still untapped possibilities. I will discuss some examples of the new value generation and open horizons for industrial collaboration for better customer engagement.

1. Connect company with user insights

3D printing aggregators, such as Thingiverse, provide rich world for exploring do-it-yourself 3D-printables. People are solving their concrete needs with all kinds of tools and parts, such as GoPro camera holders, and sharing the results for others to use. Often the DIY part has features that are far better than the original from the manufacturer.

Manufacturing companies are following these online forums in order to get insights on the next products, understand needs that are related to the uses of their products, and also to identify talented designers and innovators.

Some companies are even smarter. They actively engage and invite online talents to join their development projects and design challenges, offering soft rewards like great community of co-developers, learning journeys and recognition, or tangible rewards. For example Local Motors has used online community for the development of the 3D printed cars.

dia11.png

2. Use community to develop better parts

Spare parts is a promising 3D printing application for car industry.  Mercedes Benz is starting the manufacturing of metal 3D printed on-demand spare parts for older trucks. The parts are manufactured from the digital models that either exist already or are reverse engineered from existing parts.

”Using additive manufacturing, the company was able to achieve parts with almost 100% density, greater purity than conventional die-cast aluminium parts, very high strength and thermal resistance – making the process particularly suitable for small batches of mechanically and thermally stressed components.” Source

17c550_02-1024x681

Mercedes Benz 3D printed spare parts. Source.

Also Daimler is developing 3D printed spare parts manufacturing, especially for plastic parts using SLS technology. The current offering covers more than150 on-demand parts.

Beyond brand specific solutions there are also companies offering spare parts for any applications. For example, Spare Parts 3D from Singapore offers a general spare part service for all and everywhere, mainly printed with plastics. The company’s mission is to digitalize the stocks. Also this service is based on the digital community. 3D printing service offices anywhere can join and become local service providers in Spare Parts 3D network. Target delivery time for spare parts is 24 hours.

pic-a

The promise and value is not only in the spare parts. Rapid manufacturing of car spare parts enables fast response to developing user needs and emerging product problems. For example, when the original spare part lacks a feature or tends to break in certain way, it can be re-designed and then printed without delays. The concept of better parts emerges. The customer gets better solution (maybe not CE approved, though) and the original manufacturer gets concrete proposals for improving the products. Of course, only if the manufacturer has a method for discussing and collaborating with the customers.

Case: Avant hydraulic block

Avant loaders are high quality machines for many kinds of jobs that require horsepower in compact and ergonomic form. The engine has hydraulic block of 2.9 kilograms with over 30 different parts. Finnish 3D printing company 3DStep re-designed the block for 3D printing, together with engineering company Enmac. Special attention was paid on the improved functionality and faster installation. The resulting part weights less than 400g:s and is made from one component. This part is a typical example of 3D printed better part. It is lighter, integrated and provides better functionality than the original.

avanttecno-machine      avant3d

3. Empower the engineers with 3D printing

Volkswagen has demonstrated that 3D printing can have crucial role in optimizing car design, manufacturing and maintenance. VW factory in Portugal makes over 100 000 cars every year. This factory is specialized in the manufacturing innovations related to new models.

image007_b353aq

The poka-yoke makes it possible to position and assemble screws without damaging the wheels. Source.

Desktop 3D printers were brought to help the design and manufacturing of new cars. During 2016 more than 1000 tools were 3D printed on-demand. Volkwagen reports major savings in making new tools (95%) and radically decreased manufacturing costs. The biggest shift was mental: taking the step from closed R&D environment to the use of open innovation culture.

4. Think about your 3D printing strategy

The global ecosystem of spare part catalogues, service providers and crowdsourced designers is forming right now. The open ecosystem will straightforwardly serve the customer and engineer needs rather than the company business strategy. From the company perspective, the business is shifting from dealing parts and logistics to dealing with copyrights and mastering the creative developer community.

3D printing is an opportunity to renew the company business, digitalize services and build cost-efficient solutions for logistics, maintenance and production. Any company working with cars, loaders, trucks and other vehicles needs to study the business opportunities and new avenues of competition for the next 1-3 years. 3D printing will change the car industry from village garages to manufacturing plants.

Take coffee and think:

  1. How your business could be improved with 3D printed parts and tools?
  2. How your customers could be co-developers?
  3. How you can try out 3D printing in your business?

exhibit00_the-future-of-spare-parts-is-3d670.jpg

Views on spare parts business. Source: Strategy&

– Pekka Ketola, CEO 3DStep –


 

3DStep is the scandinavian forerunner in 3D printing business. Our mission is to make 3D printing business as usual. 3DStep factory and innovation centre locate in Ylöjärvi, Finland.

3DStep provides all you need from idea generation to design, optimisation, prototypes, serial additive manufacturing (metals, plastics), training and strategy development. 3DStep is your trusted partner for spare parts and better parts.

3dstep7

 

3D Printing Book Corner

Learning materials for industrial and professional 3D printing in Finnish and in English. All pointers with tag FREE are free to download. New titles are added frequently.

In spite of digitalization and smart systems, it is difficult to find proper publications on 3D printing. This site was created to compile the latest research reports and other publications in one place. I hope this page is useful for you! Best regards, Pekka


Please propose improvements and new pointers to books, reports and other prints and e-prints via the comment box below.

1. Landscape

2. Getting started

3. Business

4. Workflow

5. Design & optimisation

6. Materials & reports

7. Manufacturing & construction

8. Post processing

9. Resources

10. IPR and 3D scanning

  • Abbot, E. Reconstructing History: The Ethical and Legal Implications of 3D Technologies for Public History, Heritage Sites, and Museums, Huron Research, July 11, 2016, http://bit.ly/2QCvsnw
  • Mendis, D. Going for Gold—IP Implications of 3D Scanning & 3D Printing, CREATe, Nov. 29, 2017, http://bit.ly/2Nm8B1B
  • Billingsley, S. Intellectual Property in the Age of 3D Scanning and 3D Printing, Spar3D, July 25, 2016, http://bit.ly/2POhKwL.
  • Doctorow, C. Why 3D scans aren’t copyrightable, Boing Boing, June 21, 2016, http://bit.ly/2NnQiJq
  • Doctorow, C. 3D digitisation and intellectual property rights, Jisc, January 17, 2014, http://bit.ly/2xtl3ls
  • Shein E. Who Owns 3D Scans of Historic Sites. CACM Vol 62 No 1, Jan 2019. Pp 15-17.
  • Wachowiak, M.J., and Karas, B.V. 3D Scanning and Replication for Museum and Cultural Heritage Applications, JAIC 48 (2009), 141–158, https://s.si.edu/2NYouuN

Publication proposal:

3D-tulostus on autoalan hevosvoima

Autoala on jatkuvassa myllerryksessä. Muutoksen tuulia edustavat mm. robottiautot, autojen kytkeytyminen tietoverkkoihin ja tekoälyn vauhdittamat älykkäät ominaisuudet. Myös kaupunkisuunnittelussa autoiluun haetaan uusia systeemisiä ratkaisuja, jotta ruuhkien tukehduttamat kaupungit saataisiin taas eläviksi. Kaupunkisuunnittelua tukevat lukuisat smart traffic – hankkeet kaikilla mantereilla.

Muutosten myötä autovalmistajat ja uudet pelurit, kuten Google ja Amazon, etsivät uusia ajatusmalleja, tuotantotapoja ja haluavat ymmärtää, miten liikkumisen tarpeet muuttuvat seuraavien vuosien aikana.

Tulevaisuustyötä tehdään kiihkeästi kaikilla rintamilla. Tästä on esimerkkinä Ladan tulevaisuusvisio, joka käsittelee autoilua kokonaisuutena. Suurten toimijoiden lisäksi erityistä mielenkiintoa herättävät outlierit – pienet toimijat, jotka kehittävät kummallisilta tuntuvia ratkaisuja ja kokeiluja normaalitoiminnan laitamilla omilla pelisäännöillään, mutta jotka onnistuessaan voivat skaalautua ja muuttaa yllättäen pelikenttää, kuten Uber.

3D-tulostus

3D-tulostus tarjoaa oman vääntönsä autoalan muutokseen. Teknologian avulla autojen suunnittelu, valmistus ja elinkaaripalvelut tulevat uusiutumaan ja muuntumaan. Seuraavassa on muutamia skenaarioita mahdollisista muutoksista.

Autotehtaasta mahdollistajaksi

Auto on yhä enemmän käyttäjänsä määrittelemä. Sen yksityiskohdat ja ergonomiset ratkaisut räätälöidään automaattisesti ja myös vuoropuheluna käyttäjän kanssa. Suurin osa räätälöinnistä ei juurikaan vaikuta auton hintaan, koska automatisoiduille ja 3D-tulostusta hyödyntäville valmistusprosesseille on yhdentekevää yksityiskohtien muodot tai toiminnallisuudet, kunhan valmistusalusta on viritetty palvelemaan tarkoitusta. Yksilöllisten ominaisuuksien luomisessa hyödynnetään asiakkaasta eri yhteyksissä kerättyä henkilökohtaista dataa.

Toimijoiden roolit siis muuttuvat. Autotehdas muuttuu palveluntarjoajaksi ja mahdollistajaksi, myyjästä tulee empaattinen autoräätäli, asiakkaasta kehkeytyy myyjän kumppani auton suunnitteluun. Varsinainen auton valmistus tapahtuu asiakkaan lähellä siirrettävässä mikrotehtaassa.

bengaluru

Lähde: http://www.coroflot.com/neobhushan/LOCAL-MOTORS-for-Bengaluru

Edelläkävijänä tämänkaltaisessa toiminnassa on amerikkalainen LocalMotors, joka toteuttaa jo tämänsuuntaisia palveluita autosuunnittelussa. LocalMotorsin ensimmäinen sarjavalmisteinen 3D-tulostettu automalli on tulossa markkinoille 2017.

Ekotehokas auto

3D-tulostus tekee autosta paremman. Luontoa jäljittelevillä rakenteilla ja muodoilla autoista tulee keveämpiä ja kestävämpiä. Tietä tälle kehitykselle raivaa erityisesti lentokoneteollisuus, kuten Airbus, joka hyödyntää 3D-tulostusta aktiivisesti lentokoneiden keventämiseksi.

3D-tulostusta hyödyntämällä auton mekaanisista osista ja moottorista saadaan tehokkaampia ja kevyempiä. Esimerkiksi Renault on onnistunut keventämään moottorin painoa 25%:lla, samoin kuin osien lukumäärää.

Renault-3D-printed-engine

Auto on parempi, kun se rasittaa ympäristöä vähemmän elinkaarensa aikana. Tähän johtavat uudet rakenteet, pienempi materiaalin kulutus, keveys, sekä ylläpidon ja avoimen innovaation uudet mahdollisuudet. Auton kehittäjiksi ja suunnitteluratkaisujen parantajiksi voidaan valjastaa kaikki halukkaat suunnittelijat ja joukkoistamalla tuottaa nopeasti korkealaatuisia ratkaisuja havaittuihin ongelmiin.

Myös tässä toiminnassa LocalMotors on tiennäyttäjä. Joukkoistuksen ja 3D-tulostuksen avulla paremmat osat voidaan valmistaa saman tien prototyypeiksi ja ottaa koekäyttöön. Samaa strategiaa käytetään myös muilla aloilla. Esimerkiksi kameravalmistaja GoPro tukee avointa innovaatiota ja kannustaa avoimesti kehittämään uusia lisälaiteratkaisuja 3D-tulostusta hyödyntämällä.

Huollon paremmat työkalut

Autojen kehityksen yhteinen piirre on autojen kompaktius. Moottoritilaan ahdetaan yhä enemmän laitteita ja osien saavutettavuus vaikeutuu. Tämä purkautuu tarpeena sijoittaa laitteita ja elektroniikaa auton muihin rakenteisiin. Tilannetta ei helpota autojen laajamittainen yksilöllistyminen ja normaalirakenteista poikkeavat yksityiskohdat.

Syntyy siis tarve hyvinkin yksilöllisille huoltotyökaluille – sekä ammattilaisille että tee-se-itse -korjaajille. 3D-tulostuksen avulla kaikki mahdolliset työkalut ovat jokaisen saatavilla ilman merkittäviä lisäkustannuksia. Yksinkertaiset työkalut syntyvät jo edullisilla kotitulostimilla muutaman sentin kappalehintaan. Kalliimmat työkalut voi noutaa lähimmästä 3D-tulostuksen palvelutoimistosta.

3D-tulostus mahdollistaa edullisesti myös henkilökohtaiset apuvälineet, jotka lisäävät käsivoimaa, auttavat ulottumaan tai poistavat fyysisen vamman aiheuttaman hankaluuden, kuten sormien puuttumisen. Auton ylläpitoon voidaan tuottaa täydellinen ja henkilökohtainen huoltovälineistö, joka päivittyy esimerkiksi auton vaihdon yhteydessä.

autojuttu 3d ortoosi dragonflex

Lähde: Vasen: http://www.3ders.org/articles/20151202-unyq-launches-collection-of-3d-printed-prosthetic-upper-limb-covers.html. Oikea: https://3dprint.com/tag/3d-printed-surgical-tools/

Uudet palvelut

3D-tulostus luo vääjäämättä uusia palvelutarpeita. Osa näistä tarpeista voidaan ratkaista kehittämällä nykyisiä toimintoja, mutta syntyy myös uudenlaisia ratkaisuja. Nämä löytyvät jo osittain tämän päivän outlier -toimijoista.

Kun auto on yhä yksilöllisempi ja se voi kehittyä elinkaarensa aikana, syntyy luultavasti tarve jonkinlaiselle autokummi -toiminnalle. Autokummi ottaa hoitaakseen yksilöllisyyden ylläpidon ja auton kunnossapitoon liittyvät päivittäiset kysymykset, sekä tuottaa 3D-tulostusta hyödyntämällä uusia ratkaisuja autoilijan muuttuviin tarpeisiin.

Auton omistaja muuttuu ostajasta suunnittelijaksi ja osittain tekijäksi (prosumer). Koska autoiluun liittyy massiivinen määrä lakeja ja säädöksiä, tarvitaan palveluita, jotka tukevat autoalan prosumerismia. Käytännössä tämä johtaa monenlaisiin yhteissunnittelun toimintatapoihin, uusiin suunnittelu- ja valmistuspalveluihin, sekä tiedonhankintapalveluihin.

Painettu ja 3D-tulostettu elektroniikka tuo uusia ratkaisuja auton rakenteisiin, mutta myös penkin ja ratin väliin. Amerikkalainen Organovo tarjoaa asiakkailleen ohjelmoitavia biotulosteita, jotka asennetaan ihmisen kehoon. Millainen palvelu syntyy, kun tuodaan yhteen auton älykkyys, auton kytkeytyminen käyttäjään langattomalla yhteydellä ja nopeasti kehittyvä tekoäly? Jos tänään auton ovi avautuu käden heilautuksella, niin huomenna tapahtuu jo paljon enemmän.

So what?

Miten suomalaisen autoalan kannattaisi huomioida erityisesti 3D-tulostuksen vaikutukset?

  1. Koulutus: 3D-tulostus on ymmärrettävä riittävällä tasolla. Ymmärrys luodaan tehokkaasti täydennyskoulutuksen ja ammatillisen peruskoulutuksen kautta. 3D-tulostus tulee muuttamaan maailmaamme kuten Internet. Perustiedot on hallittava: mistä 3D-tulostuksesssa on kyse. Kuinka moni autoalan toimija pärjäisi tänä päivänä ilman Internetiä? On kehitettävä koulutusratkaisuja! 3D-tulostuksen innovatiivisia koulutusratkaisuja tarjoaa mm. ylöjärveläinen 3DStep.
  2. Palvelukehitys. Maailmalla on jo lukuisia autoalan sovelluksia ja palveluita, jotka hyödyntävät 3D-tulostusta mm. varaosien tuotannossa, kuten Daimler. Palveluiden määrä kasvaa tasaiseen tahtiin tuoden lisäarvoa sekä autoalan toimijoille, että asiakkaille. Autoalan on saatava liikkeelle uskaliaita palvelukehityshankkeita ja kokeiluita, jotta pärjäämme kilpailulle joka vääjäämättä rantautuu Suomeen.
  3. Aiheen tutkiminen asiakkaiden kanssa. 3D-tulostuksen hyödyt ja mahdollisuudet löydetään yhdessä asiakkaiden, asiantuntijoiden ja edelläkävijöiden kanssa. Tehokas työkalu tähän on monialainen edelläkävijätyöskentely (lead user co-creation). Esimerkiksi suomalainen ideascout on erikoistunut juuri tällaiseen työskentelyyn. Yksinkertaisimmillaan oivallukset syntyvät nopeissa ideatyöpajoissa.
  4. Kokeilut. Parhaiten 3D-tulostuksen maailman oivaltaa kuitenkin itse kokeilemalla. Jo kymmenet suomalaiset yritykset ovatkin hankkineet kokeilu- ja ammattikäyttöön 3D-tulostimia, sekä tukeneet laitteiden hankintaa omatoimiseen opiskeluun. Ehkäpä yksinkertainen 3D-tulostin olisi mielekäs ajatustenkehittäjä myös autokaupoisssa, korjaamoilla ja katsastuskonttoreissa.

3D-tulostus ei ole enää hypen harjalla. Se on ohittanut kriittiset kehitysvaiheet ja on nopeasti yleistymässä normaalitoiminnaksi eri aloilla. Autoalan, jos minkä on syytä pysyä vauhdissa mukana.

20170407_073927

Prototyyppi Avant kauhakuormaajan 3D-tulostetusta hydrauliikkaosasta. Lähde: 3DStep

– Pekka Ketola, 3DStep, 29.4.2017 –

Kiinnostuitko? Ota yhteys:

Biomimicry: Products by Nature

During millions of years the Nature R&D has created products, services and systems that are unbeatable in strength, features, energy efficiency and purpose for function.

They meet the technical, individual, social and survival requirements. Some of the products are outliers, very strange experiments, that have shown the way for the breakthrough innovations and strategic novelties (Ref. Välikangas, Strategic Innovation).

20170114_112315 20170114_113730

In Nature products, form always follows the function – a principle often valued also in industrial design of our times. The details in microstructures, such as bones, or larger macrostructures, such as spider webs and trees, are very difficult to copy. We have major difficulties in copying the same efficient structures, materials and adaptability in products made by man.

The advances in 3D and 4D printing technologies and new design tools empower us to copy Nature. The approach is called biomimicry. 3D design software and 3D printers are already able to create structures, forms and features that are directly copied from Nature. 3D design tools start to have functions that allow the designer to implement biomimicry and topology optimisation.

topologiaesimerkki-pieni topology-tuoli biomimicry-bone

Figure: 3D printed structures with biomimicry

New requirements

The capability of applying biomimical features in product design will trigger new needs and requirements for the next generation products. The requirements may be, for example, radical weight optimisation, flexibility of metal parts, resilience or better energy efficiency.

Parametric design is a core approach for biomimicry. The next generation design softwares will have parametric design as a standard feature. Accordingly, future product designers need to have capability to observe and understand biomimic rules, and translate those into product features.

So what?

Biomimicry opens new avenues for making great optimised products using industrial manufacturing systems, especially with 3D printing. Although Nature has created fantastic and rich variety of products, the mankind has not been very good in creating products with similar efficiency and sustainability.

Biomimicry is currently applied only in limited ways in our design processes. However, there are already great examples in architecture and large structures, for example in buildings and bridges.

e200ec4aba8e10ed3cdcfedacfb9dd0e bridge

Figures: Left: Dynamo Stadium, Russia. Right: the first 3D printed pedestrian bridge in Spain (Acciona, IAAC).

Our next steps in education, product development and manufacturing should include:

  • Imagination: We must develop better capabilities for wild imagination in product development. Next generation products are built differently, increasingly with the ideas from nature.
  • Outliers: Next generation products are today’s outliers, rather than evolution from the mainstream products. We need to have curiosity to explore and study the unlikely.
  • Right questions: Biomimicry optimizes the function. Hence the designer needs to keep asking: What the design needs to do and why it needs to do that?
  • Product evolution:  Nature is efficient in iteration, continuous prototyping, serendipity and learning from failures. Biomimicry leads us to new product development processes.
  • Tools: Although 3D printers can implement biomimicry, they are not optimized for that. We need to develop better 3D printers and materials that open the new cost efficient industry for biomimic products.

 

References

  • Parametric design. https://en.wikipedia.org/wiki/Parametric_design
  • Strategic Innovation – The Definitive Guide to Outlier Strategies (2015).  Liisa Välikangas; Michael Gibbert

 

(c) Pekka Ketola, January 2017

Bikes, velomobiles and 3D printing

 

Since Draisienne or the ”Running Machine” at 1817 bicycle has been subject for continuous technological renewal, innovation platform and response for evolving user needs. The latest advances are related to a new prototyping, product and personalisation opportunities with 3D printing. This article highlights some recent examples.

The digital wheelchair

go-home-page-0221

Source: layerdesign.com

Go wheelchair was developed with the objectives to improve the quality of life, help with the disabilities and support the individual lifestyle. Go is an example of digital consumer product development and personalisation.

The design of every wheelchair starts from mapping user’s biometric information, which is then translated to 3D digital data and manufactured using 3D printing. The accompanying GO app allows users to participate in the design process by specifying optional elements, patterns and colourways, and to place orders.

The resulting wheelchair accurately fits the individual’s body shape, weight and disability to reduce injury and increase comfort, flexibility, and support.

More about Go wheelchair:

Design for three wheels

race16-seite_d38cb69212

Source: http://www.hs-emden-leer.de

Velomobiles are special kind of bikes that run on three or four wheels. They are designed for optimal aerodynamics, which is typically achieved by laid back riding position and special design.

Akkuracer was developed by the students in the Hochschule of Emden-Leer. The aim was to achieve sustainable and organic design for best performance. Accuracer was produced using SLS 3D printing.

More about 3D-printed velomobile:

Bikes for you only

arc-bicycle-students-tu-delft-3d-printed-stainless-steel-netherlands_dezeen_936_13

Source: dezeen.com

The developers of bicycles have started to apply 3D printing in various ways and for different purposes. Below are some cases from different perspectives of bike design.

The MOBI develops a truly modular bicycle where parts can be removed and replaced, and manufactured using a desktop 3D printer by anybody. MOBI advances the ideas for open design by sharing the design files.

Robot Bike  aims for better performance and a more comfortable ride by a full custom fit. They use digital design and 3D printing to produce individually tailored bike frames from titanium.

ideas2cycles is a company specialising in the design and prototyping of bike frames. The aim of the company is to create new concepts that have an impact not only in the cycling scene, but also in design, engineering and marketing. 3D printing and freedom of design are essential enablers in the tool box.

Shapeways is active in providing solutions for bikers including a wealth of biking accessories.  For example the list of  3D printed accessories used during TheAlpe d’Huzes ride is impressive.

More about bikes and 3D printing:

 

Conclusions

All kinds of light vehicles are ideal platforms for applying digital design, 3D printing and personalisation. Parts are mostly small, testing different designs is affordable and legislation does not limit the use of new solutions on the road – as it does in car industry, for example.

Bikes, velomobiles and other light vehicles are the promised land for 3D printing.

Experience the world of 3D printing at 3DSTEP, the international 3D printing event and exhibition. October 4-5, Tampere Finland. www.3dstep.fi 

Reactions

Why people turn down the opportunity with 3D printing?

During the past year I have discussed with several industries and disciplines about the possibility to apply 3D printing technology in their activities in some form or another. I have been curious about the new opportunities and visions people create when they are faced with new technology, and also about the fears and sceptisism.

google 3dp

Metal 3D printed part

The discussions have taken place with people from manufacturing, construction, education, arts, making of musical instruments, bike builders, museums, designers, researchers, handcrafts, subcontracting, OEM, and many more.

In most cases the discussions and first reactions take similar paths: ”Our business is so conservative and traditional that I don’t see 3D printing coming into our activities in any way. The technology is far too expensive for us. And I believe, 3D printing is not mature enough or reliable for our business.” And they are right. This is of course the case when you come from a tradition and have established well-working and optimized practises.

Does this sound familiar? The experiences and encounters are more or less similar among all 3D printing evangelists and practitioners when they discuss with nonbelievers.

Simultaneously exploring the same industries and disciplines yields numerous examples and use cases how people already apply 3D printing in that specific application, industry, or discipline, and generate revenues with the new technology. The same observation emerges by looking at the industry forerunners and industry reports. 3D printing is applied in new areas and applications every day.

 

”No additive process (3D printing) can duplicate strength of the base material that could have been cast, moulded or machined from bar, let alone compete with the complex structures of composites” (Bike expert, 2013)

”First metal 3D printed bicycle frame”, ”Custom 3D printed titanium mountain bikes”, ”Robot Bike Company teams with AM experts on custom 3D printed bike frame”, ”Custom 3D Printed Carbon Fiber Bike Frame” (News titles on 3D printing and bikes, 2016)

What can we learn?

  • Forerunners do change the industry. Whatever business you think of, there is already somebody applying or exploring 3D printing. The number of these forerunners is overwhelming. And they seem to turn exploration and demonstrations into new businesses very quickly.
  • We are dealing with the phenomena of fast and slow thinking (Kahnemann). This is something deeply human which we can’t avoid. Fast thinking is automatic reaction that focuses on maintaining status quo and safety. It is often irrational and based on the incomplete, even conflicting, information that we have in the active memory. To my mind, forerunners are masters in slow thinking – combining and creating new information with deeper thought, and passing the phase of fast thinking without damage.
  • There are knowledge gaps. It is obvious that most of us don’t know enough about 3D printing and current status. And why should we? The technology is developing fast and it is really worksome to get proper information beyond the hype texts, successful demonstrations (forgetting the failed ones) and videos.
  • Consistency. It is interesting that the protective attitude against applying 3D printing is so similar across people and professions. Why guitar builders think that 3D printing will never come to their business? Why metal manufacturing company uses exactly the same words to turn down the opportunity?

 

3dvarius and classical

Classic violin and 3D-printed electric violin 3DVarius play together

The industrial renaissance and digitalisation, where 3D printing is one essential element, is a great task for all educators, knowledge generators and advocates. We all will be challenged by the new opportunities, the inefficiency of old practices and by the new business models and economy that have started to emerge.

We must think slow.

Pekka Ketola, June 12, 2016

3DSTEP & ideascout. www.3dstep.fi

 

3D-tulostuksen mestarit ja kisällit

3D-tulostus on useimmille vielä asia, josta on kokemusta lähinnä uutisten ja lööppien kautta. Suhteellisen harvoilla on aiheesta omakohtaista kokemusta. Samanlainen tilanne oli kaksikymmentä vuotta sitten, jolloin Internet ja WWW alkoivat tulla ihmisten tietoisuuteen.

Kuten Internetin omaksuminen aikanaan, myös 3D-tulostus on uusi taito, jonka hallitsemisesta on konkreettista hyötyä työssä ja harrastuksissa. Perusteet on helppo oppia, mutta vasta mestari soveltaa osaamistaan luovasti ja pystyy ratkomaan kimuranttejakin ongelmatilanteita ja hyödyntää menetelmää luovasti. 3D-tulostus on joustava työkalu, jota voi soveltaa lukemattomiin asioihin. Kun toiset valmistavat 3D-tulostuksella muovisia joulukoristeita yksinkertaisilla muovipursottimilla, toiset tuottavat koneiden metalliosia kehittyneemmillä lasersintrauslaitteilla. Siksi se leviää nopeasti. Peruslaitteet ovat kaikkien saatavilla kotitietokoneiden hinnalla ja niitä hankitaan oppilaitoksiin, harrastuskäyttöön, yrityksiin ja yksityishenkilöiden käyttöön. Suurin osa oppimisesta tapahtuu toistaiseksi kantapään ja kokeilujen kautta. Muutamia organisoituja koulutusratkaisuja on tarjolla. 3D-tulostuksen, mallinnuksen ja muihin siihen liittyvien taitojen osaajia syntyy vauhdikkaasti. Yhteinen tapa kertoa osaamisesta puuttuu. Tässä blogikirjoituksessa avataan 3D-tulostukseen liittyvän osaamisen kehittämistä erityisesti osaamismerkkien avulla.

Osaamismerkit Osaamismerkki (Open badge) on kansainvälisesti sovittu tapa kertoa osaamisesta ja taidoista. Se on järjestelmäriippumaton ja henkilölähtöinen konsepti, jonka on kehittänyt Mozilla.org. Osaamismerkki on palkitseva tapa tuoda esille osaamista, joka ei kuulu formaalin opetuksen piiriin, esim.:

  • järjestöjen ja oppilaitosten koulutuksissa
  • hiljaisen tiedon ja aiemmin hankitun osaamisen näkyväksi tekemisessä
  • organisaatioiden sisäisissä koulutuksissa ja henkilöstön kehittämisessä
​Lähde: lccdigilit.our.dmu.ac.uk​

​Lähde: lccdigilit.our.dmu.ac.uk​

Osaamismerkkejä voi myöntää organisaatio tai henkilö. Merkin saaja on aina henkilö, joka voi vastaanottaa tai jättää vastaanottamatta hänelle myönnetyn merkin. Saaja säilyttää osaamismerkkinsä Mozillan pilvipalvelun henkilökohtaisessa kansiossa. Lähde: http://www.discendum.com/openbadge Tekes on rahoittanut Open Badge Factory -projektia, jonka puitteissa on luotu pilvipalvelu, jonka avulla käyttäjät voivat luoda, myöntää, jakaa ja hallita Mozilla-säätiön Open Badge -konseptiin perustuvia osaamismerkkejä. Merkkejä on tällä hetkellä hyödynnetty esim. IlonaIT:n koulutukseen osallistumisen osoittamiseksi ja OsaOppi III – Osaamispisteet pelissä! OsaOppi III on OPH:n rahoittama pelillinen ammatillisen koulutuksen opetustoimen henkilöstön osaamisen kehittämisohjelma. Hankkeessa on luotu OPE.fi-taitotasojen osoittamiseksi osaamismerkit vaadittavista taidoista (http://www.oppiminenonline.com/osaoppi-iii-hanke/).

Osaamismerkit 3D-tulostuksessa 3D-tulostus on erinomainen sovellusalue osaamismerkeille, mm. koska:

  • 3D-tulostus on universaali menetelmä, joka kehittyy nopeasti.
  • 3D-tulostusta voi soveltaa lähes kaikilla mahdollisilla sovellusalueilla
  • Oppiminen perustuu usein henkilön omaan innostukseen ja intohimoon
  • Yhteiset tavat kertoa aiheen osaamisesta puuttuvat kansallisesti ja kansainvälisesti.

Pirkanmaalla toimivan 3D-tulostuksen Akatemian innovaatiopäivässä Helmikuussa 2015 pohdittiin, mitkä ovat luontevia aiheita osaamismerkeille ja mihin kysymyksiin ne voisivat vastata? Näitä voisivat olla:

  • Tulostuksen perusteet
    • Kuinka saan esineen tulostettua yksinkertaisella laitteella?
    • Mistä saan tietoa? Mitä suomenkielisiä oppaita on tarjolla? Mitkä ovat tärkeimmät tietolähteet?
    • Millaisia verkostoja ja toimijoita on Suomessa ja maailmalla?
  • Ohjelmistot ja tiedostomuodot
    • Mitä ohjelmistoja on tarjolla ja mihin tarkoitukseen?
    • Onko olemassa suomenkielisiä ohjelmistoja?
    • Millaisia tiedostomuotoja liittyy 3D-tulostukseen?
  • 3D-mallinnus ja skannaus:
    • Kuinka muotoja voi mallintaa skannaamalla?
    • Kuinka muotoja voi mallintaa ohjelmistoilla? Mitä ohjelmistoja on tarjolla?
    • Mistä saa valmiita malleja?
  • Liiketoiminnan aloitus
    • Millaisia sovellusesimerkkejä on tarjolla?
    • Mitkä ovat tärkeimmät asiakastarpeet? Ketkä ovat mahdollisia asiakkaita?
    • Kuinka kustannukset muodostuvat?
    • Kuinka tuotteistan palveluni?
  • Miljoonabisnes
    • Millaisia ansaintalogiikoita on olemassa? Kuinka luodaan liiketoimintainnovaatioita? Kuinka toiminta skaalataan isoksi?
    • Olemassaolevien verkkopalveluiden tehokas hyödyntäminen
    • Kuinka hyödynnetään tuoteräätälöinnin mahdollisuuksia?
  • Mestaritaso
    • Kuinka suojadun? IPR, mallisuojat ja muut
    • Kuinka hankin ja ylläpidän laitteita?
    • Kuinka hyödynnän eri materiaaleja?

Kansalaistaidot muuttuvat Yhteiskunnassa tarvittavat kansalaistaidot muuttuvat nopeaan tahtiin. Joskus oli oleellista pystyä kynimään kana saadakseen ruokaa. Tänään on hallittava Internetin käyttö. Mitkä ovat oleellisia kansalaistaitoja vaikkapa 10 vuoden kuluttua? On mahdollista, että globaalit kestävän kehityksen vaatimukset pakottavat vähentämään turhan tavaran valmistusta (=suuret varastot) ja tavaroiden siirtelyä rahtikuljetuksina (esim. Kiinasta Suomeen). Tällaisessa tilanteessa lähivalmistus ja on-demand -valmistus nousevat arkipäivän käytännöiksi. Tietotekniikan ympärille on kehittynyt suunnaton määrä uusia ammatteja, laitteita ja taitajia. Lähes jokaisen työikäisen oletetaan osaavan perusteet: kykenevän käyttämään tietokonetta ja tulostinta, sekä ratkomaan päivittäisiä ongelmatilanteita. Voisiko 3D-tulostus olla tulevaisuuden kansalaistaito, jonka soveltaminen muuttuu yhtä arkipäiväiseksi kuin Internetissä surffaaminen? Voiko olla niin, että tavaroita valmistetaan ainoastaan tarpeeseen ja tämän pohjalta syntyvät kestävän kulutuksen uudet tavat ja käytännöt? Mikäli näin tapahtuu, 3D-tulostuksen osaamismerkit tarjoavat mainion väylän lähteä systemaattisesti mutta luovasti rakentamaan uuden kansalaistaidon perusteita. Toisen asteen ammatilliset oppilaitokset ovat reagoineet 3d-tulostusosaamisen tarpeen kasvamiseen. 17 koulutuksenjärjestäjän yhteishankkeessa on haettu Opetushallituksen kehittämisrahaa opetuksen kehittämiseen. Pirkanmaalta hankkeeseen osallistuu Sastamalan koulutuskuntayhtymä. Opetushallitus rahoittaa EDU3D.fi (http://edu3d.fi) -hanketta, jossa mukana olevat koulutuksen järjestäjät kehittävät 3D-tulostusteknologian opetuskäyttöä osaksi opetussuunnitelmiaan ja tavoitteena on, että 3D-tulostuksen käyttöä edistetään systemaattisesti eri koulutusaloilla.

Osa Suomen innovaatiostrategiaa? Millainen on 3D-tulostuksen merkitys Suomen tulevaisuudelle? Eduskunnan tulevaisuusvaliokunnan raportti Suomen sata uutta mahdollisuutta kuvaa lukuisia 3D-tulostukseen liittyviä teemoja, joista voidaan rakentaa Suomalaisia menestystarinoita. Raportin laatijat toteavat:  “vaikutus Suomen ja maailman toimintatapoihin voi jo vuoteen 2030 mennessä olla suurempi kuin internetin ja älypuhelinten vaikutus nykymaailmaan.” Kyse on suurista asioista.

Ehdotus 1: Suomen innovaatiostrategia 3D-tulostus on teema, joka synnyttää uutta osaamista, työtä, keksintöjä ja innovaatioita. Suomi tarvitsee ipr- ja innovaatiostrategian, jossa huomioidaan mm. 3D-tulostus. Innovaatiostrategiassa on  mielekästä huomioida laaja kuva oppimisen ensiaskelista vientiteollisuuden keihäänkärkiin. 3D-tulostus on konkreettinen esimerkki, jonka avulla suomalaisten sukanvarsirahat saadaan tuottamaan työtä ja luomaan uudenlaista kansallista ja kansainvälistä liiketoimintaa.

Ehdotus 2: Osaamismerkit ketterästi käyttöön 3D-tulostuksen osaamismerkit tarjoavat ketterän tavan synnyttää yhteinen kieli uuden osaamisen systemaattiselle ja tarvelähtöiselle kehittämiselle. Ehdotamme, että osaamismerkit otetaan välittömästi käyttöön ja sovitaan niihin liittyvät tärkeimmät pelisäännöt kaikilla opetusasteilla ja erityyppisissä organisaatioissa. Osaamismerkkien yhteistä perustaa voidaan rakentaa mm. tässä kirjoituksessa ehdotettujen merkkien pohjalta.

Pekka Ketola Ideascout Oy:stä on 3D-tulostuksen sanansaattaja Tampereen seudulla,Nina Naskalin sydäntä lähellä ovat keksinnöt ja rahoitus, ja Jarno Haapaniemi on uusista teknologioista ja opetuksen kehittämisestä kiinnostunut opettaja Sastamalan koulutuskuntayhtymässä

Kirjoitus on alunperin julkaistu Tampereen seudun vetovoima -blogissa 14.4.2015. http://tampereenseudunvetovoima.fi/blogi/3d-tulostuksen-mestarit-ja-kisallit

Human spare parts, digitality and 3D printing

by Pekka Ketola (ideascout.fi) & Pauli Kuosmanen (digile.fi)

This blog was originally published March 13th 2015 in Digile activityblog.

This blog is available also in Finnish. Tämä blogi on luettavissa myös suomeksi.

The report of the Future Committee of the Finnish Parliament, “A Hundred New Opportunities for Finland“, introduces a large number of things that will affect health care in the form of virtualization, data processing and local manufacturing. These include:

  • open data, big data and self-organizing data
  • easy imaging of objects and computationally created images
  • freely organized remote work and organizations formed online, as well as
  • 3D printing.

This blog post will take a look at how development paths like these may affect the future of health care.

1. More knowledge – more suffering?

Online data banks, automatized data collection and data analysis enable applications that have never been possible before. Data is collected automatically every minute, and theoretically every little piece of data is connected to a larger whole. Data may then be utilized creatively for prediction, understanding complex processes and offering alternatives, for example.

Google in particular has amazed us with the multitude of ways in which data can be collected, analyzed and utilized in surprising ways. An example of this is analyzing Google search data to predict global influenza epidemics. In addition to being able to make global predictions based on the data, the same big data can be used for targeted purposes, such as user-specific advertising and finding personalized solutions. Perhaps in the future, the computer can warn you that you’re going to catch a flu next week. At the same time, you receive cheap offers for tissues and targeted drugs and a recommendation to postpone your holiday trip.

2. Smile – you’re on camera!

A human gets imaged at several stages during their life. The first pictures are taken during pregnancy at a maternity clinic. During childhood and after accidents, x-rays are used to map things like bones and teeth. Bodies are x-rayed at airport security checks. Detailed models of internal organs are created during various treatment procedures, such as computer tomography. There is already a small image library of each one of us.

The human image library is incomplete and fragmented into different data systems, but each image includes exact identification data about the person. If paleontologists are able to figure out the remaining parts of a dinosaur based on a femur, how much can we make out of a human’s exact structure based on the existing images and other data?

Would it be possible to start building a personal data bank of each person systematically, and could this be useful? Who could manage and utilize such a bank? Soldiers, for example, could be imaged and the images stored in a data bank so that limbs and bones lost in battle can be reconstructed, if necessary.

3. Biobanks & crowdsourcing

There are four licensed biobanks in Finland. Biobanks collect samples and data for future research and development projects. Any human data, such as x-rays, medical histories and genetic data may be stored in the same database.

A biobank, i.e. a database, will not create a complete image of a person. How can this incomplete data be utilized in an acute treatment situation, for example? The answer may lie in big data. A person’s own biobank will provide some of the required data. The missing data may be produced by analyzing similar situations and persons based on global data, and obviously data about close relatives.

It would be good to collect biobank data throughout a human’s lifespan. Long-term data produces scientific understanding of things like the growth of bones. The data may also be utilized, for instance, by being able to produce the right kind of 3D-printed prosthesis for a teenager who has lost their arm at regular intervals as they grow up. A similar concept is already being used to produce extracorporeal supporting structures.

If developed correctly, biobanks are the currency of the future. By utilizing data stored in them, we can save money in health care costs, predict treatment needs and develop new services.

4. Biodata is raw material for 3D printing

3D printing is based on 3D models. Models are created with computer assistance by hand, by imaging existing things, by customizing existing models or by automatically generating a model based on given criteria.

Automated design, image interpretation and computationally created images are already used in movies and video games, for example. Current artificial intelligence software is able to independently create algorithms, music and images. This type of software will probably be able to model an entire human, if given the femur as a starting point.

Several CAD modeling software already have built-in features that optimize a three-dimensional model for 3D printing. These software are also able to independently produce optimized shapes that conform to given design criteria regarding things like the amount, density or durability of the material. Biobanks contain digital data that can be converted into things like 3D models using the ideas described above. In other words, biobanks may be connected to printing quite directly.

Researchers are currently busy trying to find out what human organs can be produced by 3D printing. Bioprinting has already been used to produce heart valves, liver tissue, bone, kidneys, muscle cells and skin. In the future, biobanks will practically allow the production of human spare parts.

5. Conclusion

Medical applications are one of the greatest potentials for business related to 3D printing. Bone and tooth implants are already routinely produced by the 3D printing of titanium and ceramics. Gradually and inevitably, bioprinting will move from research labs to practice and ever deeper under the skin!

It would make sense to start a systematic and national collection of biodata by using existing methods, combining data from different sources and building an architecture that allows medical production of human spare parts in the future. As a technology, the routine printing of human muscles and organs is still a dream that is many years away, but we can start preparing for it already by collecting a unique database about our people. Combining genetic and other biobank data to the bank described here will create an enormous amount of new possibilities. The necessary know-how, whether it’s data processing, imaging or research into human spare parts, is something we have already.

Finland has great opportunities to become a leading country in biobanks and bioprinting.

3D-tulostus luo uutta teollisuutta Pirkanmaalle

Kirjoitus on julkaistu Aamulehdessä 2.10.2014

3D-tulostuksen teollinen hyödyntäminen etenee laajamittaisesti. Tehokkaita metallitulostukseen keskittyviä palvelukeskuksia nousee parhaillaan Eurooppaan, Pohjois-Amerikkaan ja Aasiaan.

Konkreettista liiketoimintaa ja uuteen osaamiseen pohjautuvaa uutta työtä syntyy nopeasti. Kyseessä on maailmaa vauhdikkaasti muuttava megatrendi, jonka äärelle ryntäävät parhaillaan tutkijat, teollisuuden suuret toimijat, pk-yritykset, kokeilijat, keksijät, oppilaitokset ja yhteisöt.

Pohjois-Amerikassa kehitystä vauhdittava National Additive Manufacturing Innovation Institute kokoaa yhteen teollisuusyritykset, yliopistot ja suuren joukon muita organisaatioita. Kiina on käynnistänyt jättihankkeen, joka tuottaa kymmenen 3D-tulostuksen osaamiskeskusta. Etelä-Koreassa on meneillään laajoja 3D-tulostukseen liittyviä teknologisia ja yhteiskunnallisia kehityshankkeita. Pohjois-Euroopassa on syntynyt useita merkittäviä 3D-tulostuksen valmistuskeskuksia, muun muassa tuhannen työntekijän Materialise Belgiassa. Tavoitteena näissä hankkeissa on muuntaa valmistava teollisuus uuteen aikakauteen, teollisuuden renessanssiin.

Aika toimia!

Pirkanmaan liiton ja Avoin Tampere -hankkeen selvityksessä todettiin, että nyt on aika toimia myös Pirkanmaalla. Perusteet menetelmän laajamittaiselle hyödyntämiselle ovat olemassa. Kaikki tarvittava osaaminen ja motivaatio ovat olemassa yrityksissä, yhteisöissä, tutkimuslaitoksissa ja oppilaitoksissa. Teknologiat ovat riittävän kypsiä teolliseen hyödyntämiseen. Yhdeksän kymmenestä pirkanmaalaisesta metallialan toimijasta uskoo, että 3D-tulostus muuttaa omaa liiketoimintaa kahden vuoden kuluessa.

Menetelmä on universaali ja skaalautuva. Sitä hyödynnetään sujuvasti muun muassa lääketieteessä, talonrakennuksessa, autojen massatuotannossa, varaosapalveluissa, ruoanvalmistuksessa, museotoiminnassa ja design-esineiden valmistuksessa. Uusia liiketoimintaa luovia sovelluksia ja menetelmiä raportoidaan päivittäin.

Pirkanmaalaisen valmistavan teollisuuden erityispiirteitä ovat muun muassa pienet tuotantosarjat ja asiakaskohtainen räätälöinti. 3D-tulostuksen voima tulee esiin erityisesti juuri tämänkaltaisessa toiminnassa. Alueella on jo muutamia yrityksiä, joiden koko liiketoiminta perustuu 3D-tulostukseen. Myös pirkanmaalaiset oppilaitokset valmistautuvat aktiivisesti alan osaajien kouluttamiseen ja sovellusvalmiuksien luomiseen.

Innostuneimmat kehittäjät ja soveltajat löytyvät yhteisöistä. Kesäkuun Opi ja Oivalla -tapaamiseen Kangasalle kokoontui yli 60 3D-tulostuksen kehittäjää. Tapahtumassa syntyi toimintaryhmiä, jotka toimivat ja kokoontuvat omaehtoisesti esimerkiksi kehittämään uusia prototyyppejä. Verkossa toimiva E-Nable -yhteisö kehittää toimivia 3D-tulostettuja proteeseja, joilla voidaan auttaa nopeasti ja taloudellisesti muun muassa vammaisia lapsia ja korvata amputoituja raajoja.

Ehdotus

Pirkanmaalla on mahdollisuus nousta teollisen 3D-tulostuksen mahdollistaman liiketoiminnan edelläkävijäksi. Ehdotamme, että alueelle luodaan pohjoiseurooppalaiseen teollisuuteen tiukasti kytkeytyvä Skandinavian johtava osaamis- ja tuotantokeskus, jonka piirissä ovat tutkimus, kehitys, opetus, pk-yritysten palvelutoiminnot ja teollisuuden tarpeiden täyttäminen.

Millainen osaamiskeskus voisi olla ja ketä se voisi palvella? Osaamiskeskuksen toiminnassa on otettava huomioon erilaiset toimijat ja toimialueet laaja-alaisesti. Teollisuuden tarpeisiin (tutkimus, tuotekehitys ja tuotanto) on kehitettävä järeitä mutta joustavia ja monipuolisia palveluita. Pk-yritysten piensarjojen prototypointi-, kehitys- ja tuotantotarpeisiin voidaan vastata tarjoamalla ketteriä ja edullisia tuotantoympäristöjä. Yksittäiset toimijat, harrastajat, yhteisöt ja mikroyritykset tarvitsevat usein pelkän toimintaympäristön, jossa voivat itse toimia. Pohjoisamerikkalainen TechShop -toimintamalli tarjoaa täydellisen esimerkin tällaisen ympäristön toteutuksesta.

3D-tulostus on lähes päivittäin erilaisten julkaisujen otsikoissa. Menetelmään suhtaudutaan kuitenkin edelleen epäilevästi. Asiaa voidaan katsoa tutkijan silmin ja todeta, että vielä on paljon parannettavaa ja keskeneräistä – hötkyily ei kannata. Tai sitten voidaan toimia innostuneesti ja innovatiivisesti hyödyntäen menetelmän tarjoamat liiketoimintamahdollisuudet, kuten monet yritykset ovat jo tehneet.

Uutta työtä ja liiketoimintaa luova mahdollisuus on tarjolla aivan silmiemme edessä. Mahdollisuus voidaan hyödyntää yhteisellä visiolla, älykkäällä yhteistoiminnalla ja konkreettisilla rahoituspäätöksillä. 3D-tulostus on jo tämän päivän mahdollisuus.

Pekka Ketola & Petri Pitkänen

Ideascoutin Ketola ja Pitkänen ovat pirkanmaalaisia 3D-tulostuksen aktivaattoreita ja Tredean 3D Pirkanmaa -hankkeen vetäjiä.

3D Printing and bikes

How 3D printing contributes to building and maintaining bikes?

This question was explored in Velo Vision magazine (Issue 45, July 2013), written by Pekka Ketola and Peter Eland. Download the full article from here.

Examples

Bike builders have already been active in exploring the possibilities. For example:

  • thingiverse.com, a catalogue for sharing 3D printing files, provides almost 300 bike-related items. The selection is growing every day, and covers everything from light mounts to preliminary designs for printable hub gears.
  • A clip-on drive pulley for an electric bike has been created. See: youtu.be/L4INtIgq1MQ
  • EADS, a Bristol based company, has created titanium bike parts including dropouts, working with bike company Charge. See: youtu.be/tkwd2YXNy9I
  • Parts to personalise bikes, specifically super-intricate lugs for framebuilding, have been printed from stainless steel. See: youtu.be/HwJwcnV-wso
  • TREK Bicycles has created functional bike parts, including suspension components, bar ends, frame parts, helmet models and more. See: http://youtu.be/7w2wB6hW-OI
  • Fairings for velomobiles could be printed, although I’m not sure it has yet been done, probably for cost and material reasons. Similar structures have, though, been printed for cars and motorbikes. Search for the Urbee 3D printed car, for example.
  • A complete bike has been printed too, although as a technology demonstrator more than as a practical product in its own right. See: youtu.be/hmxjLpu2BvY
  • Motorbikers have also been experimenting with 3D printing, and share many of the possibilities outlined in this article.

My predictions

In a few years, the bike industry and the culture of building and maintaining bikes will change. This future is already here in the form of early adopters, trials and experiments. My predictions are:

  1. That any bike builder will be able to design and produce new bikes, parts and special accessories in small volumes. Experimenting and prototyping will be fast and cheap. We will see very exciting bike designs and structures.
  2. Bike repair and maintenance services will change radically, as all parts will be available almost instantly, if not via the company’s own printer, via a printers in the same city. Fixing special and antique bikes will be easy and economical.
  3. Local bike manufacturing will boom, with the help of local printing houses. Business models will be revolutionised. Cycling communities will be active in designing and sharing bike parts worldwide.