On design principles for 3D printing

Why classic piano and violin are fundamentally different for the musician? A piano has keys, which give the exact pretuned sound. The musician has no power to adjust the pitch of a single key while playing. A violin fingerboard, on the opposite, gives the player a full freedom to play any pitches. For creativity, violin gives wider opportunities and less limitations.

Categorization sets limits on what we are able to design and make. If we prefer a design idea, say ”topology optimization”, this tends to push other ideas out of sight. We like to make things easier by categorizing, selecting tools, setting limits and organizing. Could we amplify the designer’s thinking space?

Why, what and how

A straightforward and practical design answers the question how an object is designed. The result is a concrete design or product. The commission defines what is designed, such as spare part for specific system. The result can be a specification or requirements document, for example.

We are interested in the wider question, why something is designed and made. What is the purpose of a system? And what might be results of this question?

In this writing I’m trying to draft principles for designing 3D printed systems by looking at nature, engineering and art. I’m not a designer. Hence my approach is more philosophical and aims to look at design from other perspectives than technical ones.

Nature

What is the aim of biological ecosystems? When there is shortage of water, plants react by decreasing the consumption. When there is plenty of light, good soil and humidity, plants speed up growth. When insects attack trees, trees warn other trees and generate ways to fight back. Over the time, evolution improves the ”designs” and all living adapts to the evolving environment.

Ecosystems aim to maintain and balance the overall system. This is fundamentally built-in in everything. All details, features, communication, collaboration in nature is fine tuned for maintaining the balance. The mechanisms are inherited and improved over the generations in flora and fauna. Also most human made systems aim to maintain and balance status quo (See: Peter Senge: The Fifth Discipline).

Our purpose and design principle 1 is Maintaining the system. When designing features for a machine, component or spare part, we can ask: How the overall functionality can be improved for maintaining the balance of a wider system? Or: How our solution maintains the balance in the surrounding context: people, machines, systems and eventually businesses.

Can we design components or entire systems that react, interact, communicate and adapt with others? What kind of technologies and features we could adopt to make objects capable to maintain the systemic purpose? We can play with transforming materials (4D printing), IoT, signalling, sound and vibration, embedded reservoirs, channels, sensors and actuators, machine learnging, and by expecting similarish features from other interacting components. Many of the maintaining ideas and features can be copied from biological systems (biomimicry).

Art

What is the aim of art? This question is explored in book Strange Tools: Art and Human Nature (Alva Noë, 2015):

”Art, really, is an engagement with the ways in which our practices, techniques, and technologies, organize us and it is, finally, a way to understand that organization and, inevitably, to reorganize ourselves.”

Creating art is a design process and requires tools. For musician the tool may be the instrument. For choreographer it may be the human body. For painter the tool consists of colors, brushes and canvas. Depending on the type of art, the tools are natural and fit with the purpose.

Art organizes ideas to entities that become perceivable. Sometimes art gives answers, but more often it raises new questions and forces us to think. Art helps us to see more. Art empowers us to think and create ideas that we wouldn’t be able to think or understand without it. For example, a musical performance can reveal emotions that you were not aware of. Leonardo da Vinci was a master in pinpointing the details by using visual effects to highlight (or hide) and give life to paintings.

Salvator Mundi. Painting by Leonardo da Vinci.

Our design principle 2 is Explaining and raising questions. When we design a product a or systems, we can ask: how the system can help us to better understand it and its’ purpose in the wider context? Why does this specific system or product exist?

Can we use technologies and solutions from arts to make things understandable, to highlight features or to communicate status? What can we do with colors, shapes, sounds, movement, materials, by breaking conventional boundaries, collaboration, by abstraction or realistic presentations, or by bringing together unexpected elements? Can we pinpoint or hide features by adding or removing material, by creating transparency by design or enabling other elements to connect with our system?

Leaf bridge was project (2018) to bring together art, biomimicry, materials, engineering and purpose.

Leaf bridge.

Engineering

”Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings.” – Wikipedia-

What is the purpose of engineering? Engineering brings together the best knowledge we have about a specific domain and challenges us to seek better solutions. It creates new technical artifacts for specific needs by bringing together the right skills, technologies, innovation and leadership.

Engineering and art are similar in many ways. Appropriate technologies, methods and tools are needed to reach the goal. Collaboration and cross disciplinarity are fundamental prerequisites in most projects. While art aims to explain or raise questions, engineering aims to give answers: this is how you do it.

Engineering solution need not be always perfect. Often good enough or better than earlier is ok. Engineering result is a snapshot in the story of technical evolution.

Our design principle 3 is Continuous improvement and technical curiosity. When we design new artefact, we need to ask: Which tools, methods, principles, competences or ideas will lead us to better solution this time? What should be different than earlier? What new is available? Should we get rid of some old thinking?

The history of mankind is the story of technical evolution, victories and continuous strive for better life. Unfortunately many of the brightest inventions have turned against us in the global scale, such as the many avenues leading to climate catastrophe.

What if all engineering would fundamentally consider the systemic implications of the solutions, going beyond single business case? Not only asking how, but also what and why? Instead of building better products, building better planet? It might be useful to understand what is the mechanism how good inventions lead to bad results over time.

Summary

Our three design principles are:

  1. Maintaining the system
  2. Explaining and raising questions
  3. Continuous improvement and technical curiosity

There has never been as many artists, innovators and engineers as we have today. We have the brightest and fast evolving technologies, materials and tools in our hands. We can collaborate globally and share ideas quickly.

Why, then, we are not really learning from the best teacher, the nature, about creating sustainable systems and environments? What would happen if we really could learn and implement?

3D printing is a globally emerging approach for creating sustaible systemic solutions. Today some of the ideas mentioned in this article can be implemented with 3D printing technologies. In the future, most of the ideas are feasible. For example, self maintaining systems are already explored in numerous research groups. Artists have started to use 3D printing and many ideas are transferred to products. 3D printing enables fast iteration and cost efficient exploration of new ideas.

3D printing eliminates many practical limitations, in the same manner as violin gives full freedom for artistic creativity.

Pekka Ketola, 3.1.2022

The sport of 3D printing

3D printing has become a standard tool for athletes. It can be used to improve ergonomy and performance in traditional sports, and to enable sports and exercising for paralympic athletes and hobbyists, in the first place

3D printing was widely present in both Tokyo Olympic games 2021 and Tokyo Paralympics 2021. Applications were seen in numerous sports and also in olympic arrangements.

Some Tokyo 2021 examples below:

Olympics

  • Olympic rings were 3D printed from recycled plastic bottles. The bottles were crowdsourced from the city.
  • 3D printing was widely applied in athletes’ footwear. Most medalists had 3D printed insoles.
  • 3D printed custom pistol grip improved eronomy and accuracy (Celine Goberville).
  • 3D printing was applied in developing innovative racing bike solutions for the Great Britain Cycling Team.

Paralympics

  • 3D printing was used to improve grip and ergonomy in special gloves, for example for wheelchair racing.
  • Bike pedal structures were designed and 3D printed to match the individual needs of athletes.
  • Custom fit crank arms and and grips were 3D printed for racing wheelchairs.
  • Para-athletes with missing fingers, for example, had 3D printed accessories (Taymon Kenton-Smith).

Comprehensive list of 3D printing examples in professional sports during the past years would be very long. It is obvious that sports is great innovation platform for 3D printing. I’m excited to see the new solutions in Paris 2024.

Extreme personalization

The atheletes need to persistently optimize their performance and anticipate the details of forthcoming competition. 3D printing can often be part of the solution. The solution must exactly fit with the athelete’s needs at a specific point of time for extreme performance. For example, a sudden injury may change the need rapidly.

Solutions are created with skilled teams where the athlete is key person in the collaborative design team. Ideas can be copied from elsewhere, but the final product is always fine tuned solution, based on innovation, data, design, production, iteration and testing.

Reaching the best possible quality is a fundamental requirement. Sometimes the solution needs to be available in couple of hours, for example as unexpected need for a spare part. The team needs to perform and be ready for solving tricky problems.

Translation to normal life

Athletes are forerunners in finding ways how 3D printing can serve us all. Solutions developed for top performance can be translated to wider uses, in the same way as Formula1 developers create innovations that are applied in car and other industries, such as aerodynamics and carbon fibre technology.

In my vision, Olympic 3D printing innovations will translate, for example, in

  • Developing fast and high quality idea-to-implementation processes
  • Enabling tasks that were earlier impossible for individuals
  • Developing task specific tools and accessories for wide range of professions
  • Solving problems related to ergonomy and occupational health
  • Creating cost efficient solutions for accessibility
  • Innovative uses of emerging 3D printing materials
  • Design innovations
  • Developing functional products.

Are you interested to collaborate on developing sports inspired solutions with the help of 3D printing? Let’s talk!

Links

Functional products

What is the next generation of 3D printed products?

When the first applications of commercial 3D printing emerged, they were mostly about appearance models and prototypes. These are still, and will be, powerful and valuable applications in many businesses. During the past 10 years we have seen radical development in design tools, materials, 3D printing technologies and skills. 3D printing is now serious and reliable manufacturing method for end products, product series and spare parts in all industries. We have 3D printed products that are beautiful, optimized in many ways and serve perfectly for the intended purposes.

Is this the end of evolution? Not even close! We only start to have a good platform to imagine the future systems, after practising the technology basics and having a vague understanding of what we can make. So, here is my vision for the next generation products, made with the help of 3D printing.

“The future is already here – it’s just not evenly distributed.

– William Gibson –

Examples

  1. Interactive products will merge different technologies seamlessly, and interact with the user, system or environment in many levels. This future window is cracked open by Anouk Wipprecht. Products like Spider Dress or Proximity Dress show how products can sense and react to data or different signals from the environmnent.
  2. Personal amplifiers will give new capabilities to people. Paralympian athletes already use 3D printed prosthetes and appliances to support with a given sport, for example to run faster with spring-like artifical legs. Exosceletons are used to help lifting heavy weights. When this opportunity develops to the next level, we will build products that give us strength, better senses or capabilites never seen before. In the future we may have bionic olympics that drive the development of personal amplifiers in the same ways as Formula 1 races drive the development of better cars.
  3. New vehicles. In 1950’s the dream of a flying car emerged. Now we start to have manned drones. There are many obstacles slowing down the wider adoption, such as manufacturing cost, safety, regulation and non-existing traffic management systems for these small manned vehicles. Putting obstacles aside, let’s just ask, is it doable to make low cost flying vehicle? The concept was presented by Janne Kyttänen in his vision about 3D printed manned drone. By using suitable materials and careful optimized design, the body of the vehicle can be 3D printed in few hours with a large format 3D printer. The rest is about putting electronics, motors and other components automatically in place.
3D printed manned drone. Model 3D printed by 3DStep. Design by Janne Kyttänen.

The making of functional products

The next generation products will be based on strong systemic view. It is not about having perfect components, optimized for specific features, such as cooling or minimizing materials, but about justifying the whole reason for a product the be realised. We can make optimized components for an airplane for saving weight, or we can design new categories of sustainable flying vehicles.

The next generation products will gracefully ignore the boundaries of sciences. Rich multidisciplinary knowledge is applied to achieve the goals, such as making technology products that react with biosignals and apply artificial intelligence to perform better in a certain social context.

We will master the whole spectrum of available materials. Already today 3D printers can use an unbelievable range of materials, from living cells to tailored metal alloys. New materials emerge practically every day with amazing features. Making of the next generation functional products is not about if there is suitable materials available, but being able to define which features we want want to have in the products.

Strategic guidelines

What steps we should take towards the next generation functional products?

Collaboration is the key. Now we simply need to take collaboration into new levels. This happens by global ventures, connecting individuals, teams and developers with the help of smart development platforms. Facilitating trust between stakeholders is a mandatory activity.

Maximize creativity and imagination. Development projects are often defined by business case or ROI. The are often justified, but to maximise creativity and innovation we need more value based motivators. We, as humans, get fundamentally motivated by other things than money, especially when we face the opportunity to create radically new.

Extreme multidisciplinarity. As mentioned earlier, we need to ignore the boundaries of sciences. Products and systems of the future use the best of what humans or nature have ever invented. A powerful way to guide the development is to establish global development funds that require connecting sciences in unexpected ways. In local level great examples are, for example, hacker and maker communities, such as biocurious.org, which are based on citizen science, curiousity and co-learning.

Lets’ make it.

Pekka Ketola, February 18, 2021

CEO 3DStep Oy & Ideascout Oy. Innovator. LinkedIn

Proximate manufacturing

Global business is increasingly about design and innovation and less about low cost. When speed-to-market and reacting to customer needs are valued, finding design and production facilities close to markets make sense.

In the past the digital technology revolution was about geographically dispersed production networks. In the future, digital technologies bring biggest value close to customers due to supply certainty, better interaction, higher customization and resource saving.

New technologies, such as #3dprinting and #robotics, facilitate the rise of proximate design and manufacturing. Global supply chains will have a role, but phenomena such as neo-nationalism, protectionism and global logistical disturbances trigger the rise of local supply chains and production close to prime urban locations.

Examples: Amazon & Whole Foods, Under Armour, Adidas, Nike & Flextronics.

Thanks @MariSako for great thinking! More ideas in: Technology Strategy and Management – Free Trade in a Digital World by Mari Sako, CACM 62,4 2019

11.3.2020

Why (the idea of) freedom of design matters?

People who don’t know too much think that with 3D printing you can create almost anything, and that there is complete freedom of design for practitioners. People who know too much tell us this is not true. Which point is more valuable?

I studied for my master’s thesis ~1990s. My major was computer science. Only at the end of the studies it became possible and economically feasible to have an own computer at home! At that time, nobody (except some visionary gurus) really believed that computers would one day be everywhere in our lives. But we had the emerging idea that something like that might happen.

In my first job as designer we were developing the first Nokia communicator with the idea that Internet would be in everybody’s pocket. Hah! We hardly had functional Internet on the planet. The idea of everybody having a mobile phone was crazy. Not to mention the possibility of having Internet in the mobile phone, available for online surfing everywhere. But we had the vision driving the development. Quite soon we sent the first ever email from a mobile phone.

Now and then we see phenoma that inspire global thinking in masses. 3D printing is such thinking platform! The sole idea of 3D printing may be more valuable than the technological reality today. It empowers millions of people to safely envision about the biggest opportunity of new level of manufacturing and products. To think about what might be possible, even when you don’t know enough about the technology. Dreaming is the most powerful innovation tool.

Thinking platforms are needed to collaboratively understand or dream of what might be possible, and then go for it. It is crucial to be able to safely and creatively produce knowledge about the possible future. It is motivating for all disciplines to set goals that seem to be impossible to reach even with sufficient resourcing. With great goals humans can achieve the impossible.

Disruptions have tendency to come unnoticed and quietly. And 3D printing is next on the line for global disruption. It generates a number of related opportunity avenues, such as materials innovation, logistics, business models and design methods.

It really doesn’t really matter if freedom of design is entirely true today. It matters that we have the inspiring possibility to think about the new design space and to develop wild ideas. Most of the dreams will realize at some point of the time.

Pekka Ketola Jan. 22nd, 2020

Local manufacturing and rapid products

This is short envisioning about local manufacturing and 3D printing. If you are in a city or industrial area, imagine drawing a circle of 100m diameter around your location. What are the activities taking place in the area? Look out from your window and simply list what you see.

There are probably offices, homes, shops, services, small and large businesses, bikes and cars, maybe kids playing. Everyday activities take place, such as renovating, maintaining, adjusting, breaking things, repairing, fixing, improving, problem solving and generating new ideas. There is continuous need for solutions to make life easier.

Local manufacturing is the concept of making products close to customers and users. The idea is not new. Thousands of years people have made all they need close to where they are using the available simple materials, and often asking help from the community.

Global competition and strive for efficiency has led to centralized and optimized manufacturing in bigger volumes and in places where the production is most efficient. Local manufacturing has not been the winning concept in recent decades. However, new era seems to be starting due to the demands for sustainability, circular economy and digitalization.

We have 3D printing solutions to design, manufacture and deliver all kinds of products, spare parts and components in less than 24 hours. This exists today, but it is not yet reality everywhere (as is the case with all future cracks). Do you know where is your nearest local service to have products or spare parts 3D printed?

What kind of 3D printed parts the local customers inside your 100m radius might need? For example at home:

  1. Spare parts to fix broken handles, toys, gadgets.
  2. Special tools to improve accessibility, health, safety or ergonony
  3. Affordable design objects to make things more personal or esthetic
  4. Special holders for lights, cables, bike appliances, etc
  5. Prototypes to support design drafting or ideation project
  6. Appliances for pets (dogs, cats, aquarium).
  7. Tools and parts for hobby, such as knitting or sports

lamppu.jpg

Figure: 3D printed table light. 3D printed with wood composite, plastic and metal. Design: Origo Engineering. 3D printing: 3DStep.

Rapid products

3D printing is ready for competitive local manufacturing and new business models. Faster technologies, better software and widening offering of materials are introduced every week. Maybe the concept for future is rapid product.  Today’s 24 hour delivery time will shrink to <1h deliveries with the help of smart design tools, very fast 3D printers, digital platforms and innovative delivery strategies.

What will be the extreme customer experience for rapid products in the future? It will be close to magic. It is simple. Almost like using a magic wand. You express your need or idea to the service (or the smart device has already told what’s needed). And sooner than you expect, the product is delivered to you with a robot or drone, by the girl next door, or as virtual product proposal into your smart device.

Business

Establishing local manufacturing business for rapid products and local manufacturing is not rocket science or huge investment. You can start the business from your couch with a laptop and with a 1000€ 3D printer. Finding the correct business model is the most tricky part. In the beginning the business will be based mostly based on small transactions of less than 50€. Developing value adding services that help the local community to learn and try the rapid product possibilities may be the fast track to increase the sales. Or maybe it is simply because of the speed of solving product problems.

The business can expand further, for example,

  • by scaling up your manufacturing capability with larger fleet of 3D printers ad other tools,
  • by digital service innovation and crowdsourcing design work.
  • by developing collaborative business with other local manufacturers for wider solutions offering,  and
  • by creating explicit value (concrete problem solving) or implicit value (customer experience) for your customers.

If you had 5000€ budget, what kind of local manufacturing service would you start?

Pekka Ketola, pekka.ketola@3dstep.fi

 

 

3D printing and the team skills

3D printing and the digital development processes will change the team dynamics and establish new ways to work. In this article I will discuss some of the emerging patterns.

  1. Collaboration. Collaborative design proposes that products are designed together with the users. Collaborative product or service development is not new concept. The idea is in the heart of established practises, such as user centered design, usability engineering and service design. 3D printing is based on the affordance that products can be designed and manufactured faster with personalized features. It makes sense to consider new kinds of collaborative teams where customers, end users and the engineering team work together to exploit the affordances and user input in full. When the design and manufacturing cycles are fast and flexible there is possibility to
    1. Create more design iterations.
    2. Make more product prototypes and variations without major cost or time impact.
    3. Develop the product with users and customers in fast development cycles.
  2. Prototyping. ”Prototypes are super expensive”. This is not (always) true with 3D printing. The step from CAD file to first concrete product is short. Making changes in the prototype or simulation is far less expensive than making changes in the final product. With 3D printed prototypes, it is often possible to make the first versions almost with zero cost using inexpensive FDM technology, before proceeding to the actual implementation and materials, such as titanium. The teams need to learn to apply active prototyping and maximise the support and experiences the prototypes can provide for design and customers. There is also the marketing aspect for using and showing the prototypes already in the early phases of the design process.
  3. Role of purchasing. All larger manufacturing companies have dedicated teams for purchasing stuff needed for the main business, such as components and materials. As purchasing manager, what do you buy when you buy 3D printed components or digital spare parts? The question is often about fast on-demand manufacturing, with customer specific twists in the products. The purchasing teams need to develop skills to play with additive manufacturing platforms and services, rather than buying, lets say 10 000 units of component X. Or is there a fast shortcut between product development teams and 3D printing services? Accordingly, 3D printing services need to figure out what are the new processes and connections needed to serve the big customers.
  4. New design processes. Sustainability, circular economy, recycling, on-demand parts and other emerging phenomena ask for better design and manufacturing processes, with new requirements coming from the society and customers. For example, how do you:
    1. Design for 3D printable spare parts (already in the original product)
    2. Design for recycling
    3. Design for personalization

The concept of product design need to raise to the new level, where designer solves also the problems and needs that will come at the end of the product lifecycle. This is rarely handled in contemporary product development.

Conclusion

3D printing is not only about technology, processes and materials. It is also about the new hard and soft skills and behaviours needed in teams. Collaborative product development or the idea of super active prototyping are competences that need to be exercised, piloted and tried out.

What do you think?

Pekka Ketola, CEO 3DStep Oy

3D printing and the customer insights. Case: Car Industry & spare parts

3D printing has opened wonderful opportunities for collaboration between customer and the company. This dialogue is useful and creates value for all. It is no wonder that companies like Local Motors, Volkswagen and Shapeways take community management and co-development with 3D printing seriously.

Car industry has found maybe the largest number of 3D printing applications. It has also managed to connect users, engineers and the industry in innovative ways. However, there are still untapped possibilities. I will discuss some examples of the new value generation and open horizons for industrial collaboration for better customer engagement.

1. Connect company with user insights

3D printing aggregators, such as Thingiverse, provide rich world for exploring do-it-yourself 3D-printables. People are solving their concrete needs with all kinds of tools and parts, such as GoPro camera holders, and sharing the results for others to use. Often the DIY part has features that are far better than the original from the manufacturer.

Manufacturing companies are following these online forums in order to get insights on the next products, understand needs that are related to the uses of their products, and also to identify talented designers and innovators.

Some companies are even smarter. They actively engage and invite online talents to join their development projects and design challenges, offering soft rewards like great community of co-developers, learning journeys and recognition, or tangible rewards. For example Local Motors has used online community for the development of the 3D printed cars.

dia11.png

2. Use community to develop better parts

Spare parts is a promising 3D printing application for car industry.  Mercedes Benz is starting the manufacturing of metal 3D printed on-demand spare parts for older trucks. The parts are manufactured from the digital models that either exist already or are reverse engineered from existing parts.

”Using additive manufacturing, the company was able to achieve parts with almost 100% density, greater purity than conventional die-cast aluminium parts, very high strength and thermal resistance – making the process particularly suitable for small batches of mechanically and thermally stressed components.” Source

17c550_02-1024x681

Mercedes Benz 3D printed spare parts. Source.

Also Daimler is developing 3D printed spare parts manufacturing, especially for plastic parts using SLS technology. The current offering covers more than150 on-demand parts.

Beyond brand specific solutions there are also companies offering spare parts for any applications. For example, Spare Parts 3D from Singapore offers a general spare part service for all and everywhere, mainly printed with plastics. The company’s mission is to digitalize the stocks. Also this service is based on the digital community. 3D printing service offices anywhere can join and become local service providers in Spare Parts 3D network. Target delivery time for spare parts is 24 hours.

pic-a

The promise and value is not only in the spare parts. Rapid manufacturing of car spare parts enables fast response to developing user needs and emerging product problems. For example, when the original spare part lacks a feature or tends to break in certain way, it can be re-designed and then printed without delays. The concept of better parts emerges. The customer gets better solution (maybe not CE approved, though) and the original manufacturer gets concrete proposals for improving the products. Of course, only if the manufacturer has a method for discussing and collaborating with the customers.

Case: Avant hydraulic block

Avant loaders are high quality machines for many kinds of jobs that require horsepower in compact and ergonomic form. The engine has hydraulic block of 2.9 kilograms with over 30 different parts. Finnish 3D printing company 3DStep re-designed the block for 3D printing, together with engineering company Enmac. Special attention was paid on the improved functionality and faster installation. The resulting part weights less than 400g:s and is made from one component. This part is a typical example of 3D printed better part. It is lighter, integrated and provides better functionality than the original.

avanttecno-machine      avant3d

3. Empower the engineers with 3D printing

Volkswagen has demonstrated that 3D printing can have crucial role in optimizing car design, manufacturing and maintenance. VW factory in Portugal makes over 100 000 cars every year. This factory is specialized in the manufacturing innovations related to new models.

image007_b353aq

The poka-yoke makes it possible to position and assemble screws without damaging the wheels. Source.

Desktop 3D printers were brought to help the design and manufacturing of new cars. During 2016 more than 1000 tools were 3D printed on-demand. Volkwagen reports major savings in making new tools (95%) and radically decreased manufacturing costs. The biggest shift was mental: taking the step from closed R&D environment to the use of open innovation culture.

4. Think about your 3D printing strategy

The global ecosystem of spare part catalogues, service providers and crowdsourced designers is forming right now. The open ecosystem will straightforwardly serve the customer and engineer needs rather than the company business strategy. From the company perspective, the business is shifting from dealing parts and logistics to dealing with copyrights and mastering the creative developer community.

3D printing is an opportunity to renew the company business, digitalize services and build cost-efficient solutions for logistics, maintenance and production. Any company working with cars, loaders, trucks and other vehicles needs to study the business opportunities and new avenues of competition for the next 1-3 years. 3D printing will change the car industry from village garages to manufacturing plants.

Take coffee and think:

  1. How your business could be improved with 3D printed parts and tools?
  2. How your customers could be co-developers?
  3. How you can try out 3D printing in your business?

exhibit00_the-future-of-spare-parts-is-3d670.jpg

Views on spare parts business. Source: Strategy&

– Pekka Ketola, CEO 3DStep –


 

3DStep is the scandinavian forerunner in 3D printing business. Our mission is to make 3D printing business as usual. 3DStep factory and innovation centre locate in Ylöjärvi, Finland.

3DStep provides all you need from idea generation to design, optimisation, prototypes, serial additive manufacturing (metals, plastics), training and strategy development. 3DStep is your trusted partner for spare parts and better parts.

3dstep7

 

3D Printing Book Corner

Learning materials for industrial and professional 3D printing in Finnish and in English. All pointers with tag FREE are free to download. New titles are added almost daily.

In spite of digitalization and smart systems, it is difficult to find proper publications on 3D printing. This site was created to compile the latest research reports and other publications in one place. I hope this page is useful for you! Best regards, Pekka


Please propose improvements and new pointers to books, reports and other prints and e-prints via the comment box below.

1. Landscape

2. Getting started

3. Business

4. Workflow

5. Design & optimisation

6. Materials & reports

7. Manufacturing & construction

8. Post processing

9. Resources

10. IPR and 3D scanning

  • Abbot, E. Reconstructing History: The Ethical and Legal Implications of 3D Technologies for Public History, Heritage Sites, and Museums, Huron Research, July 11, 2016, http://bit.ly/2QCvsnw
  • Mendis, D. Going for Gold—IP Implications of 3D Scanning & 3D Printing, CREATe, Nov. 29, 2017, http://bit.ly/2Nm8B1B
  • Billingsley, S. Intellectual Property in the Age of 3D Scanning and 3D Printing, Spar3D, July 25, 2016, http://bit.ly/2POhKwL.
  • Doctorow, C. Why 3D scans aren’t copyrightable, Boing Boing, June 21, 2016, http://bit.ly/2NnQiJq
  • Doctorow, C. 3D digitisation and intellectual property rights, Jisc, January 17, 2014, http://bit.ly/2xtl3ls
  • Shein E. Who Owns 3D Scans of Historic Sites. CACM Vol 62 No 1, Jan 2019. Pp 15-17.
  • Wachowiak, M.J., and Karas, B.V. 3D Scanning and Replication for Museum and Cultural Heritage Applications, JAIC 48 (2009), 141–158, https://s.si.edu/2NYouuN

Publication proposal:

3D-tulostus on autoalan hevosvoima

Autoala on jatkuvassa myllerryksessä. Muutoksen tuulia edustavat mm. robottiautot, autojen kytkeytyminen tietoverkkoihin ja tekoälyn vauhdittamat älykkäät ominaisuudet. Myös kaupunkisuunnittelussa autoiluun haetaan uusia systeemisiä ratkaisuja, jotta ruuhkien tukehduttamat kaupungit saataisiin taas eläviksi. Kaupunkisuunnittelua tukevat lukuisat smart traffic – hankkeet kaikilla mantereilla.

Muutosten myötä autovalmistajat ja uudet pelurit, kuten Google ja Amazon, etsivät uusia ajatusmalleja, tuotantotapoja ja haluavat ymmärtää, miten liikkumisen tarpeet muuttuvat seuraavien vuosien aikana.

Tulevaisuustyötä tehdään kiihkeästi kaikilla rintamilla. Tästä on esimerkkinä Ladan tulevaisuusvisio, joka käsittelee autoilua kokonaisuutena. Suurten toimijoiden lisäksi erityistä mielenkiintoa herättävät outlierit – pienet toimijat, jotka kehittävät kummallisilta tuntuvia ratkaisuja ja kokeiluja normaalitoiminnan laitamilla omilla pelisäännöillään, mutta jotka onnistuessaan voivat skaalautua ja muuttaa yllättäen pelikenttää, kuten Uber.

3D-tulostus

3D-tulostus tarjoaa oman vääntönsä autoalan muutokseen. Teknologian avulla autojen suunnittelu, valmistus ja elinkaaripalvelut tulevat uusiutumaan ja muuntumaan. Seuraavassa on muutamia skenaarioita mahdollisista muutoksista.

Autotehtaasta mahdollistajaksi

Auto on yhä enemmän käyttäjänsä määrittelemä. Sen yksityiskohdat ja ergonomiset ratkaisut räätälöidään automaattisesti ja myös vuoropuheluna käyttäjän kanssa. Suurin osa räätälöinnistä ei juurikaan vaikuta auton hintaan, koska automatisoiduille ja 3D-tulostusta hyödyntäville valmistusprosesseille on yhdentekevää yksityiskohtien muodot tai toiminnallisuudet, kunhan valmistusalusta on viritetty palvelemaan tarkoitusta. Yksilöllisten ominaisuuksien luomisessa hyödynnetään asiakkaasta eri yhteyksissä kerättyä henkilökohtaista dataa.

Toimijoiden roolit siis muuttuvat. Autotehdas muuttuu palveluntarjoajaksi ja mahdollistajaksi, myyjästä tulee empaattinen autoräätäli, asiakkaasta kehkeytyy myyjän kumppani auton suunnitteluun. Varsinainen auton valmistus tapahtuu asiakkaan lähellä siirrettävässä mikrotehtaassa.

bengaluru

Lähde: http://www.coroflot.com/neobhushan/LOCAL-MOTORS-for-Bengaluru

Edelläkävijänä tämänkaltaisessa toiminnassa on amerikkalainen LocalMotors, joka toteuttaa jo tämänsuuntaisia palveluita autosuunnittelussa. LocalMotorsin ensimmäinen sarjavalmisteinen 3D-tulostettu automalli on tulossa markkinoille 2017.

Ekotehokas auto

3D-tulostus tekee autosta paremman. Luontoa jäljittelevillä rakenteilla ja muodoilla autoista tulee keveämpiä ja kestävämpiä. Tietä tälle kehitykselle raivaa erityisesti lentokoneteollisuus, kuten Airbus, joka hyödyntää 3D-tulostusta aktiivisesti lentokoneiden keventämiseksi.

3D-tulostusta hyödyntämällä auton mekaanisista osista ja moottorista saadaan tehokkaampia ja kevyempiä. Esimerkiksi Renault on onnistunut keventämään moottorin painoa 25%:lla, samoin kuin osien lukumäärää.

Renault-3D-printed-engine

Auto on parempi, kun se rasittaa ympäristöä vähemmän elinkaarensa aikana. Tähän johtavat uudet rakenteet, pienempi materiaalin kulutus, keveys, sekä ylläpidon ja avoimen innovaation uudet mahdollisuudet. Auton kehittäjiksi ja suunnitteluratkaisujen parantajiksi voidaan valjastaa kaikki halukkaat suunnittelijat ja joukkoistamalla tuottaa nopeasti korkealaatuisia ratkaisuja havaittuihin ongelmiin.

Myös tässä toiminnassa LocalMotors on tiennäyttäjä. Joukkoistuksen ja 3D-tulostuksen avulla paremmat osat voidaan valmistaa saman tien prototyypeiksi ja ottaa koekäyttöön. Samaa strategiaa käytetään myös muilla aloilla. Esimerkiksi kameravalmistaja GoPro tukee avointa innovaatiota ja kannustaa avoimesti kehittämään uusia lisälaiteratkaisuja 3D-tulostusta hyödyntämällä.

Huollon paremmat työkalut

Autojen kehityksen yhteinen piirre on autojen kompaktius. Moottoritilaan ahdetaan yhä enemmän laitteita ja osien saavutettavuus vaikeutuu. Tämä purkautuu tarpeena sijoittaa laitteita ja elektroniikaa auton muihin rakenteisiin. Tilannetta ei helpota autojen laajamittainen yksilöllistyminen ja normaalirakenteista poikkeavat yksityiskohdat.

Syntyy siis tarve hyvinkin yksilöllisille huoltotyökaluille – sekä ammattilaisille että tee-se-itse -korjaajille. 3D-tulostuksen avulla kaikki mahdolliset työkalut ovat jokaisen saatavilla ilman merkittäviä lisäkustannuksia. Yksinkertaiset työkalut syntyvät jo edullisilla kotitulostimilla muutaman sentin kappalehintaan. Kalliimmat työkalut voi noutaa lähimmästä 3D-tulostuksen palvelutoimistosta.

3D-tulostus mahdollistaa edullisesti myös henkilökohtaiset apuvälineet, jotka lisäävät käsivoimaa, auttavat ulottumaan tai poistavat fyysisen vamman aiheuttaman hankaluuden, kuten sormien puuttumisen. Auton ylläpitoon voidaan tuottaa täydellinen ja henkilökohtainen huoltovälineistö, joka päivittyy esimerkiksi auton vaihdon yhteydessä.

autojuttu 3d ortoosi dragonflex

Lähde: Vasen: http://www.3ders.org/articles/20151202-unyq-launches-collection-of-3d-printed-prosthetic-upper-limb-covers.html. Oikea: https://3dprint.com/tag/3d-printed-surgical-tools/

Uudet palvelut

3D-tulostus luo vääjäämättä uusia palvelutarpeita. Osa näistä tarpeista voidaan ratkaista kehittämällä nykyisiä toimintoja, mutta syntyy myös uudenlaisia ratkaisuja. Nämä löytyvät jo osittain tämän päivän outlier -toimijoista.

Kun auto on yhä yksilöllisempi ja se voi kehittyä elinkaarensa aikana, syntyy luultavasti tarve jonkinlaiselle autokummi -toiminnalle. Autokummi ottaa hoitaakseen yksilöllisyyden ylläpidon ja auton kunnossapitoon liittyvät päivittäiset kysymykset, sekä tuottaa 3D-tulostusta hyödyntämällä uusia ratkaisuja autoilijan muuttuviin tarpeisiin.

Auton omistaja muuttuu ostajasta suunnittelijaksi ja osittain tekijäksi (prosumer). Koska autoiluun liittyy massiivinen määrä lakeja ja säädöksiä, tarvitaan palveluita, jotka tukevat autoalan prosumerismia. Käytännössä tämä johtaa monenlaisiin yhteissunnittelun toimintatapoihin, uusiin suunnittelu- ja valmistuspalveluihin, sekä tiedonhankintapalveluihin.

Painettu ja 3D-tulostettu elektroniikka tuo uusia ratkaisuja auton rakenteisiin, mutta myös penkin ja ratin väliin. Amerikkalainen Organovo tarjoaa asiakkailleen ohjelmoitavia biotulosteita, jotka asennetaan ihmisen kehoon. Millainen palvelu syntyy, kun tuodaan yhteen auton älykkyys, auton kytkeytyminen käyttäjään langattomalla yhteydellä ja nopeasti kehittyvä tekoäly? Jos tänään auton ovi avautuu käden heilautuksella, niin huomenna tapahtuu jo paljon enemmän.

So what?

Miten suomalaisen autoalan kannattaisi huomioida erityisesti 3D-tulostuksen vaikutukset?

  1. Koulutus: 3D-tulostus on ymmärrettävä riittävällä tasolla. Ymmärrys luodaan tehokkaasti täydennyskoulutuksen ja ammatillisen peruskoulutuksen kautta. 3D-tulostus tulee muuttamaan maailmaamme kuten Internet. Perustiedot on hallittava: mistä 3D-tulostuksesssa on kyse. Kuinka moni autoalan toimija pärjäisi tänä päivänä ilman Internetiä? On kehitettävä koulutusratkaisuja! 3D-tulostuksen innovatiivisia koulutusratkaisuja tarjoaa mm. ylöjärveläinen 3DStep.
  2. Palvelukehitys. Maailmalla on jo lukuisia autoalan sovelluksia ja palveluita, jotka hyödyntävät 3D-tulostusta mm. varaosien tuotannossa, kuten Daimler. Palveluiden määrä kasvaa tasaiseen tahtiin tuoden lisäarvoa sekä autoalan toimijoille, että asiakkaille. Autoalan on saatava liikkeelle uskaliaita palvelukehityshankkeita ja kokeiluita, jotta pärjäämme kilpailulle joka vääjäämättä rantautuu Suomeen.
  3. Aiheen tutkiminen asiakkaiden kanssa. 3D-tulostuksen hyödyt ja mahdollisuudet löydetään yhdessä asiakkaiden, asiantuntijoiden ja edelläkävijöiden kanssa. Tehokas työkalu tähän on monialainen edelläkävijätyöskentely (lead user co-creation). Esimerkiksi suomalainen ideascout on erikoistunut juuri tällaiseen työskentelyyn. Yksinkertaisimmillaan oivallukset syntyvät nopeissa ideatyöpajoissa.
  4. Kokeilut. Parhaiten 3D-tulostuksen maailman oivaltaa kuitenkin itse kokeilemalla. Jo kymmenet suomalaiset yritykset ovatkin hankkineet kokeilu- ja ammattikäyttöön 3D-tulostimia, sekä tukeneet laitteiden hankintaa omatoimiseen opiskeluun. Ehkäpä yksinkertainen 3D-tulostin olisi mielekäs ajatustenkehittäjä myös autokaupoisssa, korjaamoilla ja katsastuskonttoreissa.

3D-tulostus ei ole enää hypen harjalla. Se on ohittanut kriittiset kehitysvaiheet ja on nopeasti yleistymässä normaalitoiminnaksi eri aloilla. Autoalan, jos minkä on syytä pysyä vauhdissa mukana.

20170407_073927

Prototyyppi Avant kauhakuormaajan 3D-tulostetusta hydrauliikkaosasta. Lähde: 3DStep

– Pekka Ketola, 3DStep, 29.4.2017 –

Kiinnostuitko? Ota yhteys:

Bikes, velomobiles and 3D printing

 

Since Draisienne or the ”Running Machine” at 1817 bicycle has been subject for continuous technological renewal, innovation platform and response for evolving user needs. The latest advances are related to a new prototyping, product and personalisation opportunities with 3D printing. This article highlights some recent examples.

The digital wheelchair

go-home-page-0221

Source: layerdesign.com

Go wheelchair was developed with the objectives to improve the quality of life, help with the disabilities and support the individual lifestyle. Go is an example of digital consumer product development and personalisation.

The design of every wheelchair starts from mapping user’s biometric information, which is then translated to 3D digital data and manufactured using 3D printing. The accompanying GO app allows users to participate in the design process by specifying optional elements, patterns and colourways, and to place orders.

The resulting wheelchair accurately fits the individual’s body shape, weight and disability to reduce injury and increase comfort, flexibility, and support.

More about Go wheelchair:

Design for three wheels

race16-seite_d38cb69212

Source: http://www.hs-emden-leer.de

Velomobiles are special kind of bikes that run on three or four wheels. They are designed for optimal aerodynamics, which is typically achieved by laid back riding position and special design.

Akkuracer was developed by the students in the Hochschule of Emden-Leer. The aim was to achieve sustainable and organic design for best performance. Accuracer was produced using SLS 3D printing.

More about 3D-printed velomobile:

Bikes for you only

arc-bicycle-students-tu-delft-3d-printed-stainless-steel-netherlands_dezeen_936_13

Source: dezeen.com

The developers of bicycles have started to apply 3D printing in various ways and for different purposes. Below are some cases from different perspectives of bike design.

The MOBI develops a truly modular bicycle where parts can be removed and replaced, and manufactured using a desktop 3D printer by anybody. MOBI advances the ideas for open design by sharing the design files.

Robot Bike  aims for better performance and a more comfortable ride by a full custom fit. They use digital design and 3D printing to produce individually tailored bike frames from titanium.

ideas2cycles is a company specialising in the design and prototyping of bike frames. The aim of the company is to create new concepts that have an impact not only in the cycling scene, but also in design, engineering and marketing. 3D printing and freedom of design are essential enablers in the tool box.

Shapeways is active in providing solutions for bikers including a wealth of biking accessories.  For example the list of  3D printed accessories used during TheAlpe d’Huzes ride is impressive.

More about bikes and 3D printing:

 

Conclusions

All kinds of light vehicles are ideal platforms for applying digital design, 3D printing and personalisation. Parts are mostly small, testing different designs is affordable and legislation does not limit the use of new solutions on the road – as it does in car industry, for example.

Bikes, velomobiles and other light vehicles are the promised land for 3D printing.

Experience the world of 3D printing at 3DSTEP, the international 3D printing event and exhibition. October 4-5, Tampere Finland. www.3dstep.fi 

Reactions

Why people turn down the opportunity with 3D printing?

During the past year I have discussed with several industries and disciplines about the possibility to apply 3D printing technology in their activities in some form or another. I have been curious about the new opportunities and visions people create when they are faced with new technology, and also about the fears and sceptisism.

google 3dp

Metal 3D printed part

The discussions have taken place with people from manufacturing, construction, education, arts, making of musical instruments, bike builders, museums, designers, researchers, handcrafts, subcontracting, OEM, and many more.

In most cases the discussions and first reactions take similar paths: ”Our business is so conservative and traditional that I don’t see 3D printing coming into our activities in any way. The technology is far too expensive for us. And I believe, 3D printing is not mature enough or reliable for our business.” And they are right. This is of course the case when you come from a tradition and have established well-working and optimized practises.

Does this sound familiar? The experiences and encounters are more or less similar among all 3D printing evangelists and practitioners when they discuss with nonbelievers.

Simultaneously exploring the same industries and disciplines yields numerous examples and use cases how people already apply 3D printing in that specific application, industry, or discipline, and generate revenues with the new technology. The same observation emerges by looking at the industry forerunners and industry reports. 3D printing is applied in new areas and applications every day.

 

”No additive process (3D printing) can duplicate strength of the base material that could have been cast, moulded or machined from bar, let alone compete with the complex structures of composites” (Bike expert, 2013)

”First metal 3D printed bicycle frame”, ”Custom 3D printed titanium mountain bikes”, ”Robot Bike Company teams with AM experts on custom 3D printed bike frame”, ”Custom 3D Printed Carbon Fiber Bike Frame” (News titles on 3D printing and bikes, 2016)

What can we learn?

  • Forerunners do change the industry. Whatever business you think of, there is already somebody applying or exploring 3D printing. The number of these forerunners is overwhelming. And they seem to turn exploration and demonstrations into new businesses very quickly.
  • We are dealing with the phenomena of fast and slow thinking (Kahnemann). This is something deeply human which we can’t avoid. Fast thinking is automatic reaction that focuses on maintaining status quo and safety. It is often irrational and based on the incomplete, even conflicting, information that we have in the active memory. To my mind, forerunners are masters in slow thinking – combining and creating new information with deeper thought, and passing the phase of fast thinking without damage.
  • There are knowledge gaps. It is obvious that most of us don’t know enough about 3D printing and current status. And why should we? The technology is developing fast and it is really worksome to get proper information beyond the hype texts, successful demonstrations (forgetting the failed ones) and videos.
  • Consistency. It is interesting that the protective attitude against applying 3D printing is so similar across people and professions. Why guitar builders think that 3D printing will never come to their business? Why metal manufacturing company uses exactly the same words to turn down the opportunity?

 

3dvarius and classical

Classic violin and 3D-printed electric violin 3DVarius play together

The industrial renaissance and digitalisation, where 3D printing is one essential element, is a great task for all educators, knowledge generators and advocates. We all will be challenged by the new opportunities, the inefficiency of old practices and by the new business models and economy that have started to emerge.

We must think slow.

Pekka Ketola, June 12, 2016

3DSTEP & ideascout. www.3dstep.fi

 

Human spare parts, digitality and 3D printing

by Pekka Ketola (ideascout.fi) & Pauli Kuosmanen (digile.fi)

This blog was originally published March 13th 2015 in Digile activityblog.

This blog is available also in Finnish. Tämä blogi on luettavissa myös suomeksi.

The report of the Future Committee of the Finnish Parliament, “A Hundred New Opportunities for Finland“, introduces a large number of things that will affect health care in the form of virtualization, data processing and local manufacturing. These include:

  • open data, big data and self-organizing data
  • easy imaging of objects and computationally created images
  • freely organized remote work and organizations formed online, as well as
  • 3D printing.

This blog post will take a look at how development paths like these may affect the future of health care.

1. More knowledge – more suffering?

Online data banks, automatized data collection and data analysis enable applications that have never been possible before. Data is collected automatically every minute, and theoretically every little piece of data is connected to a larger whole. Data may then be utilized creatively for prediction, understanding complex processes and offering alternatives, for example.

Google in particular has amazed us with the multitude of ways in which data can be collected, analyzed and utilized in surprising ways. An example of this is analyzing Google search data to predict global influenza epidemics. In addition to being able to make global predictions based on the data, the same big data can be used for targeted purposes, such as user-specific advertising and finding personalized solutions. Perhaps in the future, the computer can warn you that you’re going to catch a flu next week. At the same time, you receive cheap offers for tissues and targeted drugs and a recommendation to postpone your holiday trip.

2. Smile – you’re on camera!

A human gets imaged at several stages during their life. The first pictures are taken during pregnancy at a maternity clinic. During childhood and after accidents, x-rays are used to map things like bones and teeth. Bodies are x-rayed at airport security checks. Detailed models of internal organs are created during various treatment procedures, such as computer tomography. There is already a small image library of each one of us.

The human image library is incomplete and fragmented into different data systems, but each image includes exact identification data about the person. If paleontologists are able to figure out the remaining parts of a dinosaur based on a femur, how much can we make out of a human’s exact structure based on the existing images and other data?

Would it be possible to start building a personal data bank of each person systematically, and could this be useful? Who could manage and utilize such a bank? Soldiers, for example, could be imaged and the images stored in a data bank so that limbs and bones lost in battle can be reconstructed, if necessary.

3. Biobanks & crowdsourcing

There are four licensed biobanks in Finland. Biobanks collect samples and data for future research and development projects. Any human data, such as x-rays, medical histories and genetic data may be stored in the same database.

A biobank, i.e. a database, will not create a complete image of a person. How can this incomplete data be utilized in an acute treatment situation, for example? The answer may lie in big data. A person’s own biobank will provide some of the required data. The missing data may be produced by analyzing similar situations and persons based on global data, and obviously data about close relatives.

It would be good to collect biobank data throughout a human’s lifespan. Long-term data produces scientific understanding of things like the growth of bones. The data may also be utilized, for instance, by being able to produce the right kind of 3D-printed prosthesis for a teenager who has lost their arm at regular intervals as they grow up. A similar concept is already being used to produce extracorporeal supporting structures.

If developed correctly, biobanks are the currency of the future. By utilizing data stored in them, we can save money in health care costs, predict treatment needs and develop new services.

4. Biodata is raw material for 3D printing

3D printing is based on 3D models. Models are created with computer assistance by hand, by imaging existing things, by customizing existing models or by automatically generating a model based on given criteria.

Automated design, image interpretation and computationally created images are already used in movies and video games, for example. Current artificial intelligence software is able to independently create algorithms, music and images. This type of software will probably be able to model an entire human, if given the femur as a starting point.

Several CAD modeling software already have built-in features that optimize a three-dimensional model for 3D printing. These software are also able to independently produce optimized shapes that conform to given design criteria regarding things like the amount, density or durability of the material. Biobanks contain digital data that can be converted into things like 3D models using the ideas described above. In other words, biobanks may be connected to printing quite directly.

Researchers are currently busy trying to find out what human organs can be produced by 3D printing. Bioprinting has already been used to produce heart valves, liver tissue, bone, kidneys, muscle cells and skin. In the future, biobanks will practically allow the production of human spare parts.

5. Conclusion

Medical applications are one of the greatest potentials for business related to 3D printing. Bone and tooth implants are already routinely produced by the 3D printing of titanium and ceramics. Gradually and inevitably, bioprinting will move from research labs to practice and ever deeper under the skin!

It would make sense to start a systematic and national collection of biodata by using existing methods, combining data from different sources and building an architecture that allows medical production of human spare parts in the future. As a technology, the routine printing of human muscles and organs is still a dream that is many years away, but we can start preparing for it already by collecting a unique database about our people. Combining genetic and other biobank data to the bank described here will create an enormous amount of new possibilities. The necessary know-how, whether it’s data processing, imaging or research into human spare parts, is something we have already.

Finland has great opportunities to become a leading country in biobanks and bioprinting.

3D-tulostus luo uutta teollisuutta Pirkanmaalle

Kirjoitus on julkaistu Aamulehdessä 2.10.2014

3D-tulostuksen teollinen hyödyntäminen etenee laajamittaisesti. Tehokkaita metallitulostukseen keskittyviä palvelukeskuksia nousee parhaillaan Eurooppaan, Pohjois-Amerikkaan ja Aasiaan.

Konkreettista liiketoimintaa ja uuteen osaamiseen pohjautuvaa uutta työtä syntyy nopeasti. Kyseessä on maailmaa vauhdikkaasti muuttava megatrendi, jonka äärelle ryntäävät parhaillaan tutkijat, teollisuuden suuret toimijat, pk-yritykset, kokeilijat, keksijät, oppilaitokset ja yhteisöt.

Pohjois-Amerikassa kehitystä vauhdittava National Additive Manufacturing Innovation Institute kokoaa yhteen teollisuusyritykset, yliopistot ja suuren joukon muita organisaatioita. Kiina on käynnistänyt jättihankkeen, joka tuottaa kymmenen 3D-tulostuksen osaamiskeskusta. Etelä-Koreassa on meneillään laajoja 3D-tulostukseen liittyviä teknologisia ja yhteiskunnallisia kehityshankkeita. Pohjois-Euroopassa on syntynyt useita merkittäviä 3D-tulostuksen valmistuskeskuksia, muun muassa tuhannen työntekijän Materialise Belgiassa. Tavoitteena näissä hankkeissa on muuntaa valmistava teollisuus uuteen aikakauteen, teollisuuden renessanssiin.

Aika toimia!

Pirkanmaan liiton ja Avoin Tampere -hankkeen selvityksessä todettiin, että nyt on aika toimia myös Pirkanmaalla. Perusteet menetelmän laajamittaiselle hyödyntämiselle ovat olemassa. Kaikki tarvittava osaaminen ja motivaatio ovat olemassa yrityksissä, yhteisöissä, tutkimuslaitoksissa ja oppilaitoksissa. Teknologiat ovat riittävän kypsiä teolliseen hyödyntämiseen. Yhdeksän kymmenestä pirkanmaalaisesta metallialan toimijasta uskoo, että 3D-tulostus muuttaa omaa liiketoimintaa kahden vuoden kuluessa.

Menetelmä on universaali ja skaalautuva. Sitä hyödynnetään sujuvasti muun muassa lääketieteessä, talonrakennuksessa, autojen massatuotannossa, varaosapalveluissa, ruoanvalmistuksessa, museotoiminnassa ja design-esineiden valmistuksessa. Uusia liiketoimintaa luovia sovelluksia ja menetelmiä raportoidaan päivittäin.

Pirkanmaalaisen valmistavan teollisuuden erityispiirteitä ovat muun muassa pienet tuotantosarjat ja asiakaskohtainen räätälöinti. 3D-tulostuksen voima tulee esiin erityisesti juuri tämänkaltaisessa toiminnassa. Alueella on jo muutamia yrityksiä, joiden koko liiketoiminta perustuu 3D-tulostukseen. Myös pirkanmaalaiset oppilaitokset valmistautuvat aktiivisesti alan osaajien kouluttamiseen ja sovellusvalmiuksien luomiseen.

Innostuneimmat kehittäjät ja soveltajat löytyvät yhteisöistä. Kesäkuun Opi ja Oivalla -tapaamiseen Kangasalle kokoontui yli 60 3D-tulostuksen kehittäjää. Tapahtumassa syntyi toimintaryhmiä, jotka toimivat ja kokoontuvat omaehtoisesti esimerkiksi kehittämään uusia prototyyppejä. Verkossa toimiva E-Nable -yhteisö kehittää toimivia 3D-tulostettuja proteeseja, joilla voidaan auttaa nopeasti ja taloudellisesti muun muassa vammaisia lapsia ja korvata amputoituja raajoja.

Ehdotus

Pirkanmaalla on mahdollisuus nousta teollisen 3D-tulostuksen mahdollistaman liiketoiminnan edelläkävijäksi. Ehdotamme, että alueelle luodaan pohjoiseurooppalaiseen teollisuuteen tiukasti kytkeytyvä Skandinavian johtava osaamis- ja tuotantokeskus, jonka piirissä ovat tutkimus, kehitys, opetus, pk-yritysten palvelutoiminnot ja teollisuuden tarpeiden täyttäminen.

Millainen osaamiskeskus voisi olla ja ketä se voisi palvella? Osaamiskeskuksen toiminnassa on otettava huomioon erilaiset toimijat ja toimialueet laaja-alaisesti. Teollisuuden tarpeisiin (tutkimus, tuotekehitys ja tuotanto) on kehitettävä järeitä mutta joustavia ja monipuolisia palveluita. Pk-yritysten piensarjojen prototypointi-, kehitys- ja tuotantotarpeisiin voidaan vastata tarjoamalla ketteriä ja edullisia tuotantoympäristöjä. Yksittäiset toimijat, harrastajat, yhteisöt ja mikroyritykset tarvitsevat usein pelkän toimintaympäristön, jossa voivat itse toimia. Pohjoisamerikkalainen TechShop -toimintamalli tarjoaa täydellisen esimerkin tällaisen ympäristön toteutuksesta.

3D-tulostus on lähes päivittäin erilaisten julkaisujen otsikoissa. Menetelmään suhtaudutaan kuitenkin edelleen epäilevästi. Asiaa voidaan katsoa tutkijan silmin ja todeta, että vielä on paljon parannettavaa ja keskeneräistä – hötkyily ei kannata. Tai sitten voidaan toimia innostuneesti ja innovatiivisesti hyödyntäen menetelmän tarjoamat liiketoimintamahdollisuudet, kuten monet yritykset ovat jo tehneet.

Uutta työtä ja liiketoimintaa luova mahdollisuus on tarjolla aivan silmiemme edessä. Mahdollisuus voidaan hyödyntää yhteisellä visiolla, älykkäällä yhteistoiminnalla ja konkreettisilla rahoituspäätöksillä. 3D-tulostus on jo tämän päivän mahdollisuus.

Pekka Ketola & Petri Pitkänen

Ideascoutin Ketola ja Pitkänen ovat pirkanmaalaisia 3D-tulostuksen aktivaattoreita ja Tredean 3D Pirkanmaa -hankkeen vetäjiä.