Kustomoinnin tulevaisuus

Digitalisaatio, AI ja 3D-tulostus muuttavat tapaamme valmistaa ja kuluttaa tuotteita. Yrityksille tämä tarkoittaa uutta mahdollisuutta: valmistaa yksilöllisiä tuotteita tehokkaasti. Kuinka pitkälle kustomointia voidaan viedä?

Kustomoinnin tasoja on useita, ja yritykset voivat valita niistä liiketoimintaansa parhaiten sopivan tai yhdistellä erilaisia kustomointimalleja tarjontaansa. Seuraavassa on kustomoinnin viisi päätasoa 3D-tulostuksen näkökulmasta:

  1. Standardoitu massatuotanto on perinteinen tuotantomalli, jossa kaikki tuotteet ovat identtisiä.
    • Kustannustehokas ja skaalautuva, mutta joustamaton asiakastarpeiden suhteen. Massatuotanto ei yleensä sisällä kustomointia. Sen sijaan 3D-tulostus voi mahdollistaa nopeammat prototyypit ja tehokkaamman tuotannon.
  2. Modulaarinen räätälöinti. Modulaarisessa räätälöinnissä asiakas voi valita tuotteen eri osia, mutta itse tuotteen muoto ja perusrakenne ovat ennaltamääritettyjä.
    • 3D-tulostus mahdollistaa joustavien, helposti vaihdettavien moduulien valmistuksen – esimerkiksi erilaisten pidikkeiden, lisäosien tai vaihtokomponenttien valmistamisen nopeasti ja kustannustehokkaasti.
  3. Massaräätälöinti: Tässä mallissa asiakas voi valita tiettyjä ominaisuuksia ennalta määritetyistä vaihtoehdoista.
    • Mahdollistaa suuren volyymin tuotannon, mutta tuo mukaan yksilöllisyyttä. 3D-tulostus tekee massaräätälöinnistä tehokkaampaa, sillä se ei vaadi erillisiä tuotantolinjoja jokaiselle variaatiolle.
  4. Massakustomoinnissa asiakas saa tuotteen, joka on räätälöity hänen tarpeidensa mukaisesti.
    • Tämä voi tarkoittaa esimerkiksi mukautettuja mittoja, ergonomisia muotoja tai yksilöllistä suorituskykyä. Tämä on yksi 3D-tulostuksen suurimmista vahvuuksista, sillä se mahdollistaa täysin yksilöllisten tuotteiden valmistuksen ilman suuria kustannuksia.
    • Esimerkki: 3D-tulostetut yksilölliset ortopediset pohjalliset tai urheilijoille tehdyt räätälöidyt kypärät.
  5. Hyperpersonointi: Tämä on kustomoinnin ääripää, jossa jokainen tuote on ainutlaatuinen ja suunniteltu yksittäiselle asiakkaalle.
    • Yhdistää tuotteen ja käyttäjän tarpeet saumattomasti.
    • Esimerkki: 3D-tulostetut työkalut tai suojavarusteet, jotka on suunniteltu tekoälyn avulla juuri käyttäjän kehon muotoihin ja tyyliin sopiviksi.
    • Tekoäly ja data-analytiikka voivat yhdistyä 3D-tulostukseen luoden tuotteita, jotka kehittyvät ja mukautuvat käyttäjän tarpeiden mukaan.

3D-tulostus ja science fiction: Teknologian inspiroijat ja ennustajat

Science fiction on toiminut alustana, jossa 3D-tulostuksen kaltaiset teknologiat on kuvattu jo kauan ennen niiden toteutumista. Nämä tarinat ovat paitsi inspiroineet teknologista kehitystä, myös valmistaneet yleisöä uusien innovaatioiden eettisiin ja yhteiskunnallisiin vaikutuksiin. Esimerkiksi Star Trek -sarjassa esiintynyt ”replikaattori” muistuttaa hämmästyttävän paljon nykyaikaisia 3D-tulostimia. Sarjan laite kykeni tuottamaan lähes mitä tahansa materiaalia, ja se on sittemmin inspiroinut tutkijoita kehittämään teknologioita, jotka voivat valmistaa monimutkaisia esineitä kerros kerrokselta.

3D printing in science fiction

Kirjallisuus

Science fiction -kirjallisuudessa 3D-tulostus on ollut pitkään merkittävässä roolissa ennakoimassa ja inspiroimassa teknologian kehitystä. Kirjailijat kuten Hannu Rajaniemi ovat hyödyntäneet teknologian potentiaalia luodessaan maailmoja, joissa nanoteknologia ja materiaalien muokkaus ovat arkipäivää.

Rajaniemen Kvanttivaras-sarjassa materiaalien hallinta ulottuu molekyylitasolle, tarjoten lukijalle vision siitä, kuinka 3D-tulostus voisi tulevaisuudessa muuttaa sekä tuotantoa että yhteiskuntaa. Aiemmin William F. Temple esitteli idean bioprinttauksesta tarinassaan Four Sided Triangle, jossa ihminen rakennettiin molekyyli molekyyliltä. Tämä ennakoi nykypäivän keskustelua biotulostuksen mahdollisuuksista ja eettisistä kysymyksistä. Teoksesta on myös elokuva.

Neal Stephensonin The Diamond Age tutkii 3D-tulostuksen potentiaalia. Kirjassa nanoteknologia ja materiaalien ohjelmoitavuus mahdollistavat sellaisten esineiden ja tuotteiden valmistuksen, jotka mukautuvat käyttäjiensä tarpeisiin. Stephensonin visio tarjoaa näkemyksen siitä, kuinka 3D-tulostuksen ja nanoteknologian yhdistelmä voisi demokratisoida tuotantoa ja luoda uudenlaista taloudellista tasa-arvoa.

Science fiction -kirjallisuus on toiminut teknologian kehittäjien inspiraation lähteenä. Kuvaukset resursseja säästävistä tuotantomenetelmistä ja yksilöllisistä ratkaisuista heijastuvat todellisuuteen esimerkiksi muovituotteiden edullisessa piensarjavalmistuksessa. Science fiction auttaa pohtimaan teknologian vaikutuksia niin yhteiskunnallisesti kuin kulttuurisestikin.

Cory Doctorow’n Makers pureutuu 3D-tulostuksen vaikutuksiin yhteiskunnassa ja taloudessa. Doctorow käsittelee tarinassaan sitä, kuinka yksilölliset valmistusmenetelmät ja hajautetut tuotantojärjestelmät voivat muuttaa perinteisen teollisuuden ja kuluttajien roolit. Kirjassa innovatiiviset hahmot käyttävät 3D-tulostusta luodakseen uusia liiketoimintamalleja, jotka haastavat suuryritysten aseman.

Elokuvat ja televisiosarjat

Elokuvissa ja televisiosarjoissa 3D-tulostus on kuvattu monipuolisesti ja usein huikeasti tulevaisuuteen ulottuvana teknologiana. Star Trekin ”replikaattori” muistuttaa modernia 3D-tulostinta. Laite pystyi tuottamaan ruokaa, tarvikkeita ja jopa varaosia avaruusmatkailijoiden tarpeisiin, ennakoiden sekä materiaalin hallinnan että yksilöllisen valmistuksen kehittymistä. Samankaltaista ideaa jatkoi The Jetsons, jossa ”Food-a-Rac-a-Cycle” tuotti ruokaa nykyaikaisia ruokatulostimia muistuttaen.

Modernit tarinat, kuten Westworld-sarja, ovat vieneet idean pidemmälle, käyttäen kehittyneitä 3D-tulostimia ihmisten kaltaisten androidien luomiseen. Tämä käsittelee myös eettisiä ulottuvuuksia, joita liittyy kehittyvän teknologian käyttöön. Lääketieteellisessä draamassa Grey’s Anatomy esiteltiin 3D-tulostusta verisuonten valmistamiseen, mikä tuo teknologian mahdollisuudet konkreettisella tavalla katsojan arkeen.

Science fiction -tarinat toimivat paitsi ideoiden hautomona, myös väylänä valmistaa yleisöä teknologian eettisiin ja käytännön vaikutuksiin. Monia näistä sovelluksista, kuten verisuonten tulostamista tai räätälöityjä tuotteita, on jo siirretty laboratorioista käytännön sovellutuksiin, osoittaen kuinka media voi inspiroida todellisia tieteellisiä läpimurtoja.

Tarinat eivät pelkästään heijasta teknologian potentiaalia, vaan ne toimivat ideoiden hautomoina, joissa uusia teknologioita voidaan kuvitella, testata ja arvioida ennen niiden todellisuutta. Ne ovat valmistaneet yhteiskuntaa hyväksymään uusia innovaatioita ja inspiroineet tutkijoita toteuttamaan ideoita käytännössä.

On mielenkiintoista huomata, että monet science fiction -tarinoiden 3D-tulostukseen liittyvät visiot, kuten bioprinttaus ja materiaalin tehokas valmistus, ovat muuttumassa todellisuudeksi. Tämä korostaa sitä, kuinka tieteiskirjallisuus voi toimia merkittävänä ajattelun katalyyttina ja suunnannäyttäjänä tieteellisille ja teknologisille läpimurroille.

Kirjoja

  • Bear, Greg. Blood Music. Arbor House, 1985. Explores self-replicating biotechnologies, which resonate with the themes of advanced 3D bioprinting.
  • Clarke, Arthur C. Profiles of the Future: An Inquiry into the Limits of the Possible. Harper & Row, 1962. Discusses future technologies, including concepts resembling 3D manufacturing and its societal impact.
  • Doctorow, Cory. Makers. Tor Books, 2009. A novel about a near-future world where 3D printing and micro-manufacturing revolutionize industries and creativity.
  • Gibson, William. Count Zero. Arbor House, 1986.
    Features automated and decentralized production, highlighting early conceptualizations of additive manufacturing.
  • Gibson, William. The Peripheral. Berkley, 2014. Explores advanced technologies like ”fabricators,” resembling futuristic 3D printers, in a dystopian setting.
  • Lem, Stanisław. Return from the Stars. Harvest Books, 1961. Describes ”betryzing,” a form of futuristic manufacturing and replication technology similar to 3D printing.
  • Scalzi, John. The Collapsing Empire. Tor Books, 2017. Includes elements of advanced manufacturing in its depiction of a highly developed interstellar society.
  • Stephenson, Neal. The Diamond Age: Or, A Young Lady’s Illustrated Primer. Bantam Books, 1995.
    Features advanced molecular manufacturing, a speculative precursor to 3D printing technologies.
  • Temple, William F. Four Sided Triangle. Gnome Press, 1949. An early exploration of the concept of molecular duplication, akin to bioprinting, later adapted into a 1953 film.
  • Vinge, Vernor. Rainbows End. Tor Books, 2006.
    Set in a world where ubiquitous computing and advanced manufacturing, including 3D printing, have transformed society.

Tiedätkö muita tieteiskirjoja tai -elokuvia, joissa 3D-tulostus on mukana?

Pekka Ketola. 8.2.2025

Arabiemiirikunnat ja 3D-tulostus 

Arabiemiirikunnat, erityisesti Dubai, ovat asettaneet kunnianhimoisia 3D-tulostuksen tavoitteita. Maan johdonmukainen panostus teknologiaan heijastaa pyrkimystä tulla globaaliksi johtajaksi innovatiivisessa valmistuksessa ja rakentamisessa. 3D-tulostuksen avulla Dubai ja muut kaupungit pyrkivät muuttamaan teollisuudenaloja, tehostamaan rakentamista ja vähentämään ympäristövaikutuksia. 

Dubain 3D-tulostusstrategia 

Vuonna 2016 lanseerattu Dubai 3D Printing Strategy on maailmanlaajuisesti ainutlaatuinen hanke, jonka tavoitteena on tehdä Dubaista 3D-tulostuksen globaali keskus. Strategia on osa laajempaa Dubai Future Agenda -ohjelmaa, joka pyrkii luomaan globaalin mallin taloudelle.

Strategian keskeisiä tavoitteita ovat: 

  • Rakentamisen uudistaminen: 25 % kaikista uusista rakennuksista 3D-tulostetaan vuoteen 2030 mennessä. 
  • Kustannustehokkuus: Rakennuskustannusten vähentäminen 50–70 % ja työvoimakustannusten alentaminen 50–80 %. 
  • Jätteen vähentäminen: Rakennusjätteen määrän vähentäminen jopa 60 %. 
  • Kestävän kehityksen edistäminen: Resurssien tehokkaampi käyttö ja ympäristöystävällisten rakennusmateriaalien hyödyntäminen. 

Arabiemiirikunnissa 3D-tulostusta hyödynnetään monipuolisesti eri toimialoilla, kuten rakennus- ja infrastruktuuriala, terveydenhuolto, ilmailu- ja avaruusteollisuus, sekä kuluttajatuotteet ja muoti.

Merkittäviä virstanpylväitä 3D-tulostuksen hyödyntämisessä ovat mm.: 

  • Maailman ensimmäinen täysin toiminnallinen 3D-tulostettu toimistorakennus valmistui Dubaihin vuonna 2016. 
  • Maailman suurin 3D-tulostettu kaksikerroksinen rakennus valmistui vuonna 2019. 
  • Ensimmäinen 3D-tulostettu moskeija on rakenteilla Dubaissa ja valmistuu vuoden 2025 aikana. 
  • Guinnessin maailmanennätys: Dubai Future Foundation sai tunnustuksen maailman ensimmäisestä 3D-tulostetusta kaupallisesta rakennuksesta vuonna 2020. 

Dubai Electricity & Water Authority (DEWA) on rakentanut maailman ensimmäinen täysin 3D-tulostetun laboratoriorakennuksen Mohammed bin Rashid al-Maktoum -aurinkopuistoon. Tämä Robotics & Drone -laboratorio on ensimmäinen kokonaan paikan päällä 3D-tulostettu rakennus Yhdistyneissä Arabiemiirikunnissa ja samalla maailman ensimmäinen 3D-tulostettu laboratorio. 

Roads & Transport Authority (RTA) on ottanut käyttöön 3D-tulostuksen Dubain metrojärjestelmän osien valmistuksessa. RTA käyttää teknologiaa sekä pienten että suurten osien tulostamiseen, mikä vähentää kustannuksia ja parantaa liikennejärjestelmän tehokkuutta.  3D-tulostettuja osia käytetään muun muassa lipunmyyntiautomaattien ja porttien alijärjestelmissä sekä muissa päivittäiselle toiminnalle tärkeissä osissa. Teknologian avulla RTA voi pitää Dubain metron laitteet pidempään käytössä ja samalla alentaa kustannuksia.

Sertifiointi ja sääntely

Dubai on maailman ensimmäinen kaupunki, joka on ottanut käyttöön 3D-tulostetun rakentamisen sertifiointi- ja vaatimustenmukaisuusjärjestelmän. Tämä varmistaa, että kaikki 3D-tulostetut rakenteet täyttävät turvallisuusstandardit ja tekniset vaatimukset. Sertifiointi on osa laajempaa strategiaa, jolla Dubai pyrkii houkuttelemaan kansainvälisiä yrityksiä ja investointeja 3D-tulostuksen alalle. 

Koulutus

Arabiemiirikunnat on ottanut käyttöön laajan 3D-teknologian koulutusohjelman. Vuonna 2019 aloitettiin 3D-teknologian käyttöönotto yli 200 peruskoulussa. Ohjelma sisältää opetussuunnitelman, 3D-ohjelmiston (Makers Empire 3D), opettajien resurssit, koulutuksen ja tuen

Tavoitteena on opettaa Design Thinking -ajattelua, STEM-taitoja ja 21. vuosisadan taitoja nuoremmille oppilaille.

Sharjah Research, Technology and Innovation Park (SRTI Park) keskittyy tutkimuksen, teknologian ja innovaatioiden edistämiseen. SRTI Park on tarjonnut 3D-tulostuskursseja opiskelijoille huhtikuusta 2023 lähtien.

Myös American University of Sharjah (AUS) on aktiivisesti mukana 3D-tulostuksen koulutuksessa. Se toteuttaa mm. lukiolaisille suunnattuja Mechanical Engineering Boot Camp -leirejä, joissa opetetaan 3D-mallinnusta ja -tulostusta. 3D-tulostus on kiinteästi osa myös insinööri- ja arkkitehtiopintoja.

Tulevaisuuden näkymät

Arabiemiirikunnat jatkavat investointejaan 3D-tulostukseen, ja teknologiaa tullaan soveltamaan yhä laajemmin eri aloilla. Tulevaisuuden painopisteitä ovat: 

  • Paikallinen valmistus: Riippuvuuden vähemtäminen tuonnista ja nopea on-demad tuotanto
  • Kestävän kehityksen ratkaisut: Rakennusten hiilijalanjäljen pienentäminen ja ekologisten materiaalien käyttö. 
  • Älykkäät kaupungit: 3D-tulostuksen integrointi kaupunkisuunnitteluun ja infrastruktuuriin. 
  • Yhteistyö kansainvälisten yritysten kanssa: Innovaatioiden nopea skaalaus ja uusien liiketoimintamahdollisuuksien luominen. 

Lähteitä

  1. MEED. Dubai shapes 3D printing strategy. Saatavilla: https://www.meed.com/dubai-shapes-3d-printing-strategy/
  2. Parametric Architecture. Dubai’s 3D Printing Strategy: Transforming the Construction Sector. Saatavilla: https://parametric-architecture.com/dubais-3d-printing-strategy-transforming-the-construction-sector/
  3. Generation 3D. 3D Printing Services in Dubai & UAE. Saatavilla: https://generation3d.ae
  4. Arch2O. 25% of Dubai buildings will be 3D printed by 2030. Saatavilla: https://www.arch2o.com/25-dubai-buildings-will-3d-printed-2030/
  5. Trade.gov. UAE 3D Printing Opportunities in Construction. Saatavilla: https://www.trade.gov/market-intelligence/uae-3d-printing-opportunities-construction
  6. 3DPrint.com. Dubai creates world’s first 3D-printed construction certification system. Saatavilla: https://3dprint.com/304069/dubai-creates-worlds-first-3d-printed-construction-certification-system/
  7. Voxel Matters. Dubai Municipality installs 40 3D printed seats. Saatavilla: https://www.voxelmatters.com/dubai-municipality-installs-40-3d-printed-seats/
  8. OnPoint3D. 3D Printing Services in Dubai & UAE. Saatavilla: https://onpoint3d.com/services/3d-printing/
  9. Fast Company Middle East. 3D printing: The future of the construction industry in the UAE. Saatavilla: https://fastcompanyme.com/news/3d-printing-the-future-of-construction-industry-in-the-uae/
  10. Dubai Municipality. World’s first system for certification and conformity marks in the field of 3D printing in the construction industry. Saatavilla: https://www.dm.gov.ae/2023/10/08/dubai-municipality-launches-worlds-first-system-for-certification-and-conformity-marks-in-the-field-of-3d-printing-in-construction-industry/
  11. Proto21. Professional 3D Printing Services in Dubai. Saatavilla: https://www.proto21.ae
  12. Dubai Future Foundation. 3D Printing Strategic Alliance. Saatavilla: https://www.dubaifuture.ae/initiatives/future-design-and-acceleration/3d-printing-strategic-alliance
  13. C3D. 3D Printing Services Dubai & UAE. Saatavilla: https://www.c3d.ae
  14. Orbit3D. Top 5 revolutionary trends in 3D printing in UAE for 2024. Saatavilla: https://orbit3d.ae/top-5-revolutionary-trends-in-3d-printing-in-uae-for-2024/
  15. 3D PrintU. 3D Printing Solutions in UAE. Saatavilla: https://3dprintu.ae
  16. Dubai Municipality. 3D Printing in the Construction Sector. Saatavilla: https://www.dm.gov.ae/municipality-business/3d-printing-in-the-construction-sector/
  17. Ultratec 3D. 3D Printing Solutions for Various Industries. Saatavilla: https://www.ultratec3d.ae
  18. Inoventive. 3D Printing & Additive Manufacturing Services in Dubai. Saatavilla: https://inoventive.com
  19. Arch Graphic. Architectural 3D Printing Services in UAE. Saatavilla: https://arch-graphic.com
  20. FirstBit. Blackwell 3D launches feasibility study for 3D printed housing in the UAE. Saatavilla: https://firstbit.ae/blog/blackwell-3d-launches-feasibility-study-for-3d-printed-housing-in-the-uae/

Tutustu myös:

3D-tulostus Afrikassa

3D-tulostus Kiinassa

3D-tulostus Kiinassa

Kiina on merkittävä 3D-tulostuksen kehittäjä. Alan kasvu Kiinassa ja sen globaali vaikutus ovat nopeita. Kiinalaisen toiminnan kehittyminen on tärkeää huomioida suomalaisen ja eurooppalaisen 3D-tulostuksen kehittämisessä. Mielenkiintoinen ilmiö on mm. massasegmentointi.



Kiinan ja Euroopan 3D-tulostusmarkkinoilla on monia yhteisiä piirteitä, kuten voimakas kasvu ja palveluinnovaatiot. Eroja löytyy muun muassa Kiinan vahvasta valtion tuesta, edullisesta tuotantokapasiteetista ja nopeasta innovoinnista. Seuraavassa muutamia poimintoja kiinalaisista erityispiirteistä.

1. Valtion tukemat ohjelmat
Kiinan hallitus tukee vahvasti 3D-tulostuksen kehitystä osana maan teollisuuspolitiikkaa. Tämä sisältää merkittäviä investointeja tutkimukseen ja kehitykseen sekä valtion tukemia aloitteita, kuten ”Made in China 2025” -ohjelma (MIC25), joka asettaa lisäävän valmistuksen keskeiseksi osaksi maan teollista tulevaisuutta.

2. Subventiot ja verokannustimet
Kiinassa tarjotaan laajoja subventioita ja verokannustimia yrityksille, jotka investoivat 3D-tulostusteknologiaan ja -infrastruktuuriin.

3. 3D-tulostinten valmistus
Kiina on maailman johtava edullisten 3D-tulostimien valmistaja. Esimerkiksi Creality ja Anycubic ovat globaalisti suosittuja kuluttajien 3D-tulostimia. Teollisten 3D-tulostimien valmistajia ovat mm. Farsoon Technologies, Shining 3D, UnionTech ja ZRapid Tech.

4. Massasegmentointi
Kiinan valtavat markkinat ovat synnyttäneet massasegmentoinnin ilmiön. Tämä keskittyy tuottamaan useita erilaisia versioita samasta tuotteesta, jotka on suunniteltu vastaamaan eri asiakasryhmien tarpeita. Tämä eroaa massaräätälöinnistä, joka keskittyy yksittäisten tuotteiden muokkaamiseen vastaamaan kunkin asiakkaan erityistarpeita ja toiveita.

5. Massamodularisointi
Massamodularisointi on liiketoimintamalli, jossa yritykset myyvät perustuotteita, joita voidaan helposti muokata tai laajentaa erilaisilla vaihdettavilla moduuleilla. Tämä malli hyödyntää 3D-tulostusta, joka mahdollistaa kustannustehokkaan ja joustavan tuotannon sekä lisää miniatyrisointimahdollisuuksia.

6. Avoimen lähdekoodin ekosysteemi
Kiinassa on laaja avoimen lähdekoodin ekosysteemi, joka edistää nopeaa innovointia ja materiaalikehitystä, vähentää kustannuksia ja mahdollistaa laajemman tuotevalikoiman.

7. Nopea skaalaus
Kiinassa on kyky nopeaan innovointiin ja teknologioiden skaalaamiseen. Yritykset voivat siirtyä nopeasti prototyyppivaiheesta massatuotantoon suuren ja joustavan tuotantokapasiteettinsa ansiosta.

8. Edulliset ratkaisut
Kiinalaiset yritykset pyrkivät tarjoamaan kustannustehokkaita ratkaisuja, mikä tekee 3D-tulostusteknologiasta saavutettavampaa laajemmalle käyttäjäkunnalle.

Lähteitä:

3D-tulostus Afrikassa: Portti innovaatioon ja kehitykseen

3D-tulostuksen hyödyntäminen edistyy kaikkialla maailmassa teknologiaksi, jolla on potentiaalia muuttaa teollisuudenaloja. Afrikka on mukana kehityksessä. Terveydenhuollosta rakentamiseen, 3D-tulostus ottaa merkittäviä edistysaskeleita paikallisten haasteiden ratkaisemisessa ja talouskasvun edistämisessä.


Afrikan maissa elää voimakas yhteisöllisyyden, jakamisen ja yritteliäisyyden kulttuuri. Tämä on vuosisatojen kuluessa tuottanut poikkeuksellisen mielenkiintoisia liiketoiminnan innovaatioita, jotka ilmenevät kekseliäinä tuotteina ja palveluina. Uudelle teknologialle keksitään nopeasti käyttöä, joka voi merkittävästi poiketa ns. tavanomaisesta käytöstä.

3D-tulostuksen toimijoita Afrikassa

Mentis 3D (Etelä-Afrikka) on johtava toimija Afrikan 3D-tulostusmarkkinoilla. Se on Afrikan ensimmäinen ISO9001-sertifioitu 3D-tulostuslaitos ja toistaiseksi HP:n ainoa 3D-tulostuskumppani mantereella. Mentis 3D tarjoaa kattavan palveluvalikoiman, joka sisältää suunnittelun, skannauksen, tulostuksen ja jälkikäsittelyn.

Nairobi on Kenian innovaatiokeskus ja 3D-tulostus on merkittävä osa kaupungin yrityskulttuuria. Mm. Objet Kenya, Kuunda 3D ja  AB3D toimivat Nairobissa.

14 Trees on Holcimin ja British International Investmentin (BII) yhteisyritys. Yhtiö keskittyy 3D-tulostuksen hyödyntämiseen rakentamisessa. Iroko 3D -tulostin on suunniteltu parantamaan rakentamisen nopeutta, kustannustehokkuutta ja joustavuutta sekä tarjoamaan kestäviä ja edullisia asuntoja ja infrastruktuuria ympäri Afrikkaa.

Etelä-Afrikan CRPM (Centre for Rapid Prototyping and Manufacturing) on tärkeässä roolissa 3D-tulostuksen omaksumisessa. CRPM tekee yhteistyötä Botswanan yliopiston ja Botswanan teknologiatutkimus- ja innovaatiolaitoksen (BITRI) kanssa kehittäen 3D-tulostuksen ekosysteemejä Botswanassa.

3D-tulostuksen tulevaisuus Afrikassa näyttää valoisalta, ja useat tekijät vaikuttavat sen lupaaviin näkymiin:

1. Terveydenhuollon Innovaatiot: 3D-tulostuksella on potentiaalia mullistaa terveydenhuolto Afrikassa. Esimerkiksi räätälöidyt proteesit ja kirurgiset työkalut voivat tarjota edullisia ja saavutettavia terveydenhuollon ratkaisuja.
2. Koulutus: 3D-tulostuksen integrointi opetussuunnitelmiin antaa nuorelle sukupolvelle tulevaisuuden kannalta olennaisia taitoja.
3. Kestävä kehitys: 3D-tulostus tukee kestävää kehitystä vähentämällä jätettä ja edistämällä resurssien tehokasta käyttöä.
4. Talouskasvu: 3D-tulostuksen omaksuminen edistää talouskasvua luomalla uusia liiketoimintamahdollisuuksia ja parantamalla olemassa olevia teollisuudenaloja.
5. Paikallinen valmistus: 3D-tulostuksella on potentiaali vähentää riippuvuutta tuonnista mahdollistamalla paikallisten tuotteiden valmistuksen.

Lähteita:

3D Printing in Africa: Kenya & 3D Printing

Uudelleenvalmistus ja 3D-tulostus – kestävä tapa hyödyntää resursseja

3D-tulostus on jo vakiinnuttanut asemansa valmistavassa teollisuudessa, mutta sen mahdollisuudet eivät rajoitu vain uusien tuotteiden luomiseen. Kiinnostava ja kasvava näkökulma on uudelleenvalmistus (remanufacturing), jossa käytetyt tuotteet tai niiden komponentit kunnostetaan, päivitetään ja saatetaan uudenveroisiksi. Tämä avaa uusia mahdollisuuksia erityisesti kestävän kehityksen ja kiertotalouden näkökulmasta.

Remanufacturing

Mitä on uudelleenvalmistus ja miten se eroaa muista prosesseista?

Uudelleenvalmistus ei ole pelkkää kierrätystä eikä yksinomaan korjaamista tai entisöintiä. Kyseessä on järjestelmällinen prosessi, jossa käytetty tuote puretaan, analysoidaan ja sen käyttökelpoiset osat kunnostetaan tai korvataan uusilla. Lopputuloksen tulee vastata täysin uuden tuotteen suorituskykyä ja laatua. Tämä eroaa perinteisestä kierrätyksestä, jossa tuotteet hajotetaan perusmateriaaleiksi ilman tarkempaa analyysiä niiden uudelleenkäytettävyydestä.

3D-tulostus uudelleenvalmistuksessa

3D-tulostus on merkittävä uudelleenvalmistuksen mahdollistaja. Sen avulla voidaan esimerkiksi:

  • Valmistaa varaosia kuluneiden tai poistettujen osien tilalle, jolloin tuotteen elinkaarta voidaan jatkaa.
  • Mukauttaa ja päivittää komponentteja, jotta ne sopivat modernisoituihin standardeihin tai uusiin käyttötarkoituksiin.
  • Luoda täysin uusia osia vanhojen mallien pohjalta, erityisesti silloin, kun alkuperäisiä varaosia ei ole enää saatavilla.

Uudelleenvalmistus yhdistettynä 3D-tulostukseen tukee sekä ympäristöllistä että taloudellista kestävyyttä. Tämä vähentää uusien raaka-aineiden tarvetta, pienentää jätteen määrää ja mahdollistaa tuotteiden pidemmän käyttöiän. Lisäksi yrityksille se tarjoaa uusia liiketoimintamahdollisuuksia, esimerkiksi palvelumallien kautta, joissa tuotteita ei myydä lopullisesti, vaan niitä ylläpidetään ja päivitetään jatkuvasti.

Tulevaisuuden näkymät

Uudelleenvalmistus muuttaa tapamme ajatella valmistusta ja kiertotaloutta. Tulevaisuudessa tekoäly ja digitaaliset alustat tehostavat uudelleenvalmistusprosesseja. Älykkäät algoritmit analysoivat käytettyjen komponenttien kuntoa, optimoivat varaosien valmistusta ja ehdottavat kestävämpiä ratkaisuja. Digitaaliset kaksoset (digital twins) voivat seurata tuotteiden elinkaarta ja ennakoida huollon ja uudelleenvalmistuksen tarpeita jo ennen niiden ilmenemistä.

Lisäksi äärimmäiset kestävän kehityksen vaatimukset voivat vauhdittaa siirtymistä kiertotalouspohjaiseen valmistusmalliin, jossa tuotteet suunnitellaan alun perin uudelleenvalmistettaviksi. Yritykset voivat hyödyntää jakamistalouteen perustuvia liiketoimintamalleja, joissa tuotteita ei myydä kertakäyttöisinä, vaan ne palautuvat valmistajalle päivitystä ja uudelleenvalmistusta varten. 3D-tulostus yhdistettynä tekoälyyn mahdollistaa entistä räätälöidymmän ja resurssitehokkaamman tuotannon, joka tukee sekä liiketoimintaa että ympäristön hyvinvointia.

Onko yritykselläsi mahdollisuus hyödyntää 3D-tulostusta uudelleenvalmistusprosessissa? Jatketaan keskustelua ja jaetaan kokemuksia!

Generative design – two interpretations

Generative design is a term commonly used in connection with 3D printing, for example. It uses algorithms to generate a wide range of product design options based on predefined constraints and objectives. It is particularly useful in the aerospace industry, where the use of materials, structural integrity and aesthetic appeal are key.

The figure shows an example of a generative design of a cable clamp. Source: https://formlabs.com/eu/blog/generative-design/

The term has also a new meaning. Generative design has become more common in the design of digital solutions. It refers to the use of artificial intelligence to create interactive systems, user experiences and digital content where adaptability and customisation are key. For example, a generatively designed AI-based learning platform adapts its content and interface to the needs of individual learners.

Technology brokering refers to situations where technology or methodologies from one field can be applied to another. What are the transfer opportunities and similarities in generative design between physical and digital solutions?

  • Optimisation algorithms: generative design uses optimisation algorithms to maximise materials, structure and functionality. The same optimisation thinking can be applied to the design of digital user interfaces and software.
  • Iterative design process: generative design allows rapid iteration and prototyping, in particular through 3D printing. In digital applications, iterative methods are often used, where design and development are continuously improved based on user feedback and analytics.
  • User-centred design: generative design can produce products that are tailored to precisely meet user needs and requirements. AI-powered adaptive learning systems are examples of how user-centred design can improve engagement and efficiency. Algorithms analyse user behaviour and adapt the system accordingly.
  • AI and machine learning: AI and machine learning can optimise design processes, find the best solutions from large amounts of data, and create innovative products that are better performing and more sustainable. Interactive systems use AI and machine learning to create adaptive and personalised user experiences that improve engagement and user experience.

Generative design combines the power of algorithms and artificial intelligence to create innovative solutions for both physical products and digital systems. In the design of physical products, optimisation algorithms and iterative processes produce efficient and aesthetically pleasing solutions. In digital solutions, user-centric design and artificial intelligence enable adaptive and personalised experiences. From a technology brokering perspective, these two interpretations of generative design offer tremendous opportunities for transferring and combining innovation across different application areas, fostering creativity, efficiency and sustainability.

Pekka Ketola, 2.1.2025

OSAM – Open source additive manufacturing

3D-tulostuksen ilmiöön on aina liittynyt aktiivinen tiedonjakaminen esimerkiksi yhteisöissä, 3D-mallien jakamisalustoilla ja kehitysprojektien joukkoistamisessa. Ilmiötä voi laajemmin kutsua OSAM-toiminnaksi (Open Source Additive Manufacturing).

OSAM viittaa avointen lähteiden periaatteiden hyödyntämiseen, mikä kattaa 3D-mallien, tulostustekniikoiden ja parhaiden käytäntöjen jakamisen yhteisössä sekä löydettävissä olevan tiedon aktiivisen hyödyntämisen kilpailuetuna. Kansainväliset AM -yhteisöt, generatiivinen tekoäly ja verkosta löytyvät käännösohjelmat mahdollistavat yhä tehokkaamman toiminnan.

OSAMin keskeiset hyödyt

1. Kustannustehokkuus. OSAM laskee tutkimus- ja kehityskustannuksia. Hyödyntämällä avoimesti saatavilla olevaa tietoa yritys voi vähentää tuotekehityksen, prototyyppien ja tuotannon kustannuksia. 3D-tulostuksen tietoa on runsaasti saatavilla eri kielisissä verkkolähteissä.

2. Nopeutettu innovaatio. OSAMin yhteistyöhön perustuva luonne tarkoittaa, että edistysaskeleita tehdään nopeasti. Kun yritykset, yhteisöt ja yksilöt jakavat avoimesti läpimurtojaan ja parannuksiaan, koko yhteisö hyötyy. Tämä johtaa nopeampiin iteraatioihin, parempiin tuotesuunnitelmiin ja ratkaisuihin, jotka eivät olisi mahdollisia suljetussa ekosysteemissä. Esimerkiksi e-Nable ja Open Bionics hyödyntävät OSAM-toimintaa proteesien ja bioniikan kehittämiseen.

3. Lisääntynyt joustavuus. OSAMin avulla organisaatio voi hyödyntää ulkoisia tehokkaammin. Joustavuus mahdollistaa kokeilut materiaaleilla, tulostustekniikoilla ja suunnitelmilla pienemmillä alkuinvestoinneilla ja vähemmillä virheillä. Se mahdollistaa myös nopean suunnanmuutoksen markkinoiden muutoksen tai teknologisten edistysaskeleiden mukaisesti.

4. Yhteisön tuki. Yhteisön jäsenenä yrityksellä on pääsy maailmanlaajuiseen asiantuntijoiden ja harrastajien verkostoon. Verkosto tarjoaa arvokkaita näkemyksiä, auttaa ongelmanratkaisussa ja tarjoaa tukea, auttaen yritystä voittamaan haasteet tehokkaammin. Yhteisön tarjoama tuki voi olla esimerkiksi start-up -toimijalle kriittinen liiketoiminnan mahdollistaja.

5. Lisääntynyt läpinäkyvyys ja luottamus. Avoimen lähteen projekteille on tyypillistä niiden läpinäkyvyys. Läpinäkyvyys luo luottamusta käyttäjien keskuudessa, sillä he voivat nähdä kehitysprosessin, osallistua siihen ja varmistaa tuotosten laadun ja luotettavuuden. Yrityksille tämä tarkoittaa esimerkiksi tuotteiden kehittämistä, joihin asiakkaasi voivat luottaa.

OSAMin periaattet

OSAM hyödyntää samoja perusperiaatteita kuin avoimen lähdekoodin tiedustelutoiminta (OSInt). Periaatteet ovat keskeisiä OSAM-toiminnan tehokkuudelle ja eettisyydelle.

1. Avoimuus. OSAM perustuu julkisesti saatavilla olevien 3D-mallien, tulostustekniikoiden ja parhaiden käytäntöjen hyödyntämiseen. Yritykset voivat käyttää laajaa avointen resurssien valikoimaa kehittääkseen ja parantaakseen omia prosessejaan. Avoimuus hyödyntää koko alan kehitystä, ei pelkästään yksittäisen yrityksen toimintaa.

2. Läpinäkyvyys. Käytetyt tiedot ja niiden lähteet kannattaa dokumentoida ja esittää selkeästi, jotta tiedon alkuperä ja luotettavuus voidaan todentaa. Tämä auttaa rakentamaan luottamusta ja mahdollistaa yhteistyön yhteisön kanssa.

3. Laillisuus ja eettisyys. OSAM-toimintaan liittyvät toimenpiteet on suoritettava noudattaen voimassa olevia lakeja ja säädöksiä. Tiedon ja resurssien käytön on oltava laillista.OSAM-toiminnassa on noudatettava korkeita eettisiä standardeja, kunnioittaen tekijänoikeuksia, yksityisyyttä ja ihmisoikeuksia. Tämä varmistaa, että toiminta on kestävää ja vastuullista.

4. Luotettavuus ja tarkkuus.

  • Lähdekriittisyys: OSAM-toiminnassa käytettyjen resurssien ja tietojen luotettavuus ja tarkkuus on arvioitava huolellisesti. Väärän tai harhaanjohtavan tiedon käyttö voi johtaa virheellisiin johtopäätöksiin ja epäonnistuneisiin projekteihin.
  • Vahvistaminen: Tietoja on pyrittävä vahvistamaan useista lähteistä aina kun mahdollista, jotta niiden paikkansapitävyys voidaan varmistaa.

5. Analyysikyky

  • Kontekstointi: Kerätyt tiedot ja resurssit on asetettava oikeaan kontekstiin, jotta niiden merkitys ja vaikutukset voidaan ymmärtää oikein. Tämä auttaa tekemään parempia päätöksiä ja kehittämään tehokkaampia ratkaisuja.
  • Yhteyksien löytäminen: Tietojen analysoinnin avulla on pyrittävä löytämään yhteyksiä ja merkityksellisiä havaintoja, jotka eivät välttämättä ole ilmeisiä pelkästään raakadatan perusteella. Tämä voi johtaa innovatiivisiin ratkaisuihin ja uusiin liiketoimintamahdollisuuksiin.

6. Ajantasaisuus ja jatkuvuus. OSAM-toimintaan liittyvän tiedon ja resurssien on oltava ajantasaisia ja relevantteja, ja tiedonhankinnan jatkuvaa. Yritys voi tällöin reagoida nopeasti muuttuviin tilanteisiin.

7. Teknologian hyödyntäminen ja automaatio. OSAM-toiminnassa käytetään monenlaisia työkaluja ja ohjelmistoja tiedon keräämiseen, analysointiin ja visualisointiin. Automatisoidut järjestelmät ja algoritmit voivat tehostaa tiedonkeruuta ja analysointia, mutta ihmisanalyytikon arvio on edelleen tärkeä. Yhdistelmä johtaa parempiin ja nopeampiin tuloksiin.

8. Yhteistyö ja tiedon jakaminen. OSAM-toimijoiden välinen yhteistyö parantaa tiedon kattavuutta ja analyysin laatua. Yhteistyö avoimen lähdekoodin yhteisöjen kanssa voi tuoda uusia näkökulmia ja ratkaisuja. Relevanteista havainnoista ja resursseista tiedottaminen oikeille tahoille on keskeistä vaikuttavuuden kannalta.

Navigating IPR challenges with generative AI and 3D printing

Generative AI and 3D printing are two technologies that together will revolutionize the way new products are designed and manufactured. Generative AI enables the creation of complex and unexpected designs, while 3D printing offers a fast and flexible, almost instant, way to turn these designs into physical products. This combination opens doors to disruptive business models but also brings significant IPR challenges.

Combining design and technical functionality

Products designed with generative AI and 3D printed can combine design and technical functionality in unprecedented ways. This raises questions about how such products should be protected from an intellectual property rights (IPR) perspective. Are they covered by design protection, technical patents, both, or by something else?

Traditional IPR models are not sufficient to cover these next generation products. For example, design protections typically cover the appearance of a product, while patents protect technical innovations. Products created with generative AI can seamlessly combine these two features, making it challenging to separate them.

Too much alike

Generative AI can create 3D models, which can pose significant copyright issues if these models closely resemble existing works. When AI creates a design, how can the maker know that there is no similar product already, or that the AI is not creating almost similar design for someone else at the moment?

This potential for infringement highlights the need for careful consideration and regulation in the use of AI for 3D modeling. Ensuring that AI-generated content does not violate intellectual property rights is crucial to fostering innovation while respecting the rights of original creators.

WIPO’s perspectives

The World Intellectual Property Organization (WIPO) has addressed the combination of generative AI and 3D printing in several publications, particularly from an IPR perspective. According to WIPO, products designed with generative AI that combine design and technical functionality can pose challenges to traditional IPR models. WIPO emphasizes the importance of developing new guidelines and practices that consider the unique characteristics of these products. It has been proposed that new forms of IPR are needed to take into account the unique features of AI-created works and the rapid innovations enabled by 3D printing. This could mean new patent classes or expanding design protection to cover AI-created products.

Summary

Generative AI and 3D printing offer enormous opportunities for innovation and new business models. At the same time, they bring significant IPR challenges that require new approaches and collaboration among experts from different fields. It is clear that we need new IPR models and practices that consider the unique features of these technologies and enable their full potential to be realized.

How do you see the impact of generative AI and 3D printing on IPR?

#GenerativeAI #3DPrinting #additivemanufacturing #IPR #Innovation #Technology

Sources:

  1. WIPO Patent Landscape Report on Generative AI (2024)
  2. WIPO Key Findings on Generative AI (2024)
  3. WIPO: Navigating Intellectual Property (2024)
  4. Berggren: Generatiivinen tekoäly ja siihen liittyvien IPR/juridisten riskien hallinta (2023)
  5. WIPO: 3D printing and the intellectual property system (2015)

How to find the future products?

3D printing is a promise for radical new concepts, products and functionalities that have never existed before. Unfortunately only less than 1% of us can imagine truly new things. We are mostly copying and variating earlier ideas.

So how can we find the truly new products and future-proof solutions ? Here are some strategies for this.

Innovation can take place at component or system level. The novelty can be considered by the impact it has (incremental, radical).

Figure 1. Dimensions of innovation by Joe Tidd.


In this article we talk about exploration for new products that are made possible by 3D printing. Exploration is the activity when the organisation seeks future product directions and opportunities.

Grounded vs. disruptive exploration

Grounded exploration emphasizes systematic development and logical improvements to products. Disruptive exploration is based on “soft” and creative practises, such as pure creativity, allowing unexpected combinations, and taking higher risks. Grounded exploration may be more common in established engineering companies and disruptive exploration in agile start-up companies.

There are always more options than can be explored and implemented. It is difficult to know which direction to take and where the markets and competition will be. The explorer is in similar situation as an astronomer trying to see distant stars – it is difficult to see far due to distance or other disturbing factors (Figure 2).

In grounded exploration the designer sets first the criteria for exploration and then studies the opportunities. In disruptive exploration the criteria for new products are set later when the opportunities are perceived.

Figure 2. The problem of identifying the right opportunities

Logical vs. non-logical

Logical approaches lead to predictable innovations and can be deducted by looking at the premises, user needs, competition and technology advances. Example activities:

  • Extend and improve the products to predictable directions, for example based on user feedback.
  • Update the applied design tools and technologies.
  • Change the product strategy according to user or business needs.
  • Apply user-centred development processes.
  • React to competition.

Non-logical approaches lead to ideas and innovations that are not obvious by looking at existing knowledge or premises. Non-logical approaches emphasize designers’ ideas, inspiration and unexpected technology combinations. The areas explored can be in conflict with the results from logical thinking. Example activities:

  • Extend the concepts or features to non-predictable directions
  • Try unknown or unproven solutions.
  • Challenge the knowledge from market research.

Target oriented vs. open ended

Target oriented approaches aim to fulfill a pre-defined goal, such as certain features, market share, price, design or customer need. The activities as a whole establish an exploration ”lense”. The pre-defined goal is the focal point for the lense. Example activities

  • Explore only ideas that support strategic (primary) goals
  • Fix errors.
  • Add features.
  • React to feedback.
  • Design for synergies across features

Figure 3. Target oriented exploration


Open ended approaches. In this approach the mission is simply to find new, without pre-defined limitations and with minimal guidance. Existing opportunities and unexpected findings are seen as “lenses” that lead the exploration towards undefined goal. The target comes visible when different combinations are tried and studied. By applying ”lenses” at different situations during exploration, different objects and possibilities come visible. Examples

  • Explore with non-strategic (secondary) goals
  • Maximize the generation of new ideas and combinations of ideas. Focus on quantity rather than quality.
  • Make design perspectives (Where we are heading?) and take perspectives (Where are we now?)

Figure 4. Exploring the unknown with opportunities

Rational vs. irrational

Rational approaches look to directions and solutions that make sense and can be justified with business goals, expertise, or data. This approach is similar to logical approach, but the emphasis is in “common sense” and intuitition – “We know there is something”. Team’s expertise and quiet knowledge play important role.
The concept of gravitational lenses clarifies the situation: you have observations indicating that something is behind the obstacles, but currently you can observe and explore only second hand indications. Examples activities:

  • Extend the ideas with known and justified use cases and ratioanl details
  • Assume emergence of certain trend, technology, customer need or user behaviour
  • Ignore some known limitations, uncertainties and risks, but with a good reason

Figure 5. Gravitational lense. A gravitational lense is formed when the light from a very distant, bright source (such as a quasar) is ”bent” around a massive object (such as a cluster of galaxies) between the source object and the observer. Souce: Wikipedia

Irrational approaches emphasize ideas that stem from non-rational user needs or simply playing with available technology and design options. Although people are capable of rational thinking they very often act irrationally or have irrational needs. For example, market research may reveal expectations or latent needs that can’t be explained by rational analysis.
For example, explore solutions that emphasize ”beauty”, “joy”, “happiness”, “showing off” that are difficult to explore, model and manage with rational mindset. This approach requires high degree of creativity and freedom, good modeling tools, but still proper understanding of the doable vs. not-doable elements. For example:

  • Apply irrational (not justified, not predicted by theory, not logical) elements in the ideas, such as playfulness and “wov”. Consider also very short lifetime vs long lifetime of a product idea, since these lead to different concepts.
  • Work with artists, people with creative talents, lead users, etc.
  • Explore beliefs, religions and other non-scientific areas that guide people’s behaviour and markets.

Incremental vs empirical

Incremental approach aims to add new elements into existing products and systems, i.e it studies what is missing part. Incremental exploration is maybe the easiest and safest option to go, but will not contribute to a new product strategy. In this approach we accept also negative increments, i.e. changing the concepts by removing existing elements.

Figure 6. Incremental approach

Examples:

  • Which functions / elements could be added to existing products and systems?
  • Which functions / elements could be removed from existing products and concepts?
  • Which features could be combined or integrated?

Empirical approach

Empirical or new-creating approach aims to define fully new strategy or direction for product innovation and concepts. The work of a designer resembles the work of an artist who applies different kinds of methods, technologies and techniques in a flexible manner in a process of appreciation, action and re-appreciation, constantly reflecting on his own work. The empirical approach designers rarely follow the methodology prescribed by normative theories.

Figure 7. Empirical approach

Examples:

  • What could be created from the given elements?
  • Which new user functions, features or designs could be proposed?
  • Focus on outliers! Outliers are ideas and concepts that seem not to fit with ”proper” ideas and are not compatible with the mainstream solutions.

Strategies for exploration

We can’t directly see to the future. It would be nice if we could. The future is hidden beyond time, trends, technology advancement and unexpected events. Fortunately we can see signs of the future everywhere around us, such as megatrends, trends, silent signals, outliers and research results. Astronomers have similar problem when they try to see galaxies and black holes that hide behind massive systems in space.

Here are four strategies to apply when identifying the opportunities for future products or systems.

1. Lenses to future

Use exploration ”lenses” as descibed in the sections above. Try to see the new opportunities and accept unexpected findings.

2. Wind Approach

Imagine you try top navigate straight from west to east and there is strong north wind. In order to reach the destination you actually need to aim to north east. This gives a different route and new parameters for the exploration.

The Wind Approach is a method for product innovators seeking future product ideas by embracing the unexpected and venturing into uncharted territories. Inspired by the way a navigator adjusts their course when faced with adverse winds, this approach challenges traditional thinking and encourages innovative solutions to emerge. By intentionally deviating from the conventional path, the Wind Approach opens up new dimensions of exploration and unlocks a plethora of exciting possibilities.

Methodology:

  1. Defining the Destination: Start by identifying the overarching goal, problem or product idea you aim to solve. This represents the ”destination” you want to reach through innovation.
  2. Mapping the Traditional Route: In the absence of any constraints or challenges, chart out the most straightforward route to your destination. This represents the conventional approach to innovation.
  3. Identifying the Wind: Introduce a disruptive element or constraint that mimics the strong north wind in the analogy. This could be a limitation, a constraint, an opposing trend, or an unconventional perspective.
  4. Adjusting the Course: Just as a navigator adjusts their course to navigate around the wind, deliberately deviate from the traditional path. In response to the introduced constraint, pivot your perspective and consider alternative directions.
  5. Finding the North East: Instead of simply overcoming the constraint, use it as a guide to explore new destination, new routes and dimensions. Like aiming for the north east in the face of a north wind, seek out unconventional ideas and opportunities that arise from accommodating the constraint.
  6. Exploring New Parameters: The Wind Approach prompts you to redefine the parameters of your innovation exploration. As you navigate around constraints, you might discover unexpected intersections between ideas, designs, materials, industries, or technologies. This can lead to the creation of entirely new product concepts.

Possibilities and Benefits:

  • Divergent Thinking: The Wind Approach fosters divergent thinking by pushing innovator to question assumptions and break free from linear thought patterns. This can lead to solutions that might not have been considered otherwise.
  • Cross-Disciplinary Insights: Embracing constraints can open doors to collaborating with experts from diverse fields. The process of navigating constraints often involves borrowing insights and techniques from unexpected sources, fostering cross-disciplinary innovation.
  • Unique Value Propositions: By embracing challenges and constraints, you can arrive at product ideas with unique value propositions. These ideas might solve problems in ways that resonate deeply with users or disrupt established markets.
  • Innovative Problem-Solving: The Wind Approach encourages creative problem-solving, as the need to circumvent constraints can lead to elegant and unexpected solutions.
  • Market Differentiation: Products conceived through the Wind Approach are likely to stand out in the market due to their unconventional nature. This differentiation can lead to stronger market positioning and a competitive edge.
  • Innovation Mindset: Continuously applying the Wind Approach can cultivate an innovation mindset within teams and organizations. It encourages a culture of adaptability, resilience, and open-mindedness.

3. DreamForge approach

DreamForge is a design methodology that harnesses the power of AI-based image generators, or any other system that amplifies the exploration space digitally, to create visually stunning and highly intricate product concepts. Unlike traditional design processes that rely solely on human creativity and constraints, DreamForge taps into the limitless potential of AI to generate products that transcend the boundaries of reality. This methodology leverages advanced machine learning algorithms to produce designs that are rich in complexity, detail, and innovation.

Figure 8. Product exploration with DreamForge. Image by Midjourney.

Key Steps:

  • AI Training: The DreamForge methodology begins with training AI models on an extensive dataset of existing 3D designs, art, and various visual inspirations. This enables the AI to learn patterns, styles, and artistic elements. This step is not always needed, since generative AI:s may have sufficient data already in place.
  • Creative Seed: Users provide a basic idea or concept as a creative seed to guide the AI’s initial design generation process. This seed could be a vague description, a set of keywords, or even an abstract image.
  • AI Design Generation: The AI takes the creative seed and generates a diverse array of design concepts. These concepts can be wildly imaginative, incorporating elements that human designers might never conceive.
  • Iteration and Refinement: Users review the generated designs and select the ones that resonate with their vision. They can provide feedback to the AI, which then refines subsequent design iterations.
  • Customization: Users have the option to customize and fine-tune the selected design, adjusting specific details, scales, and features to align with their preferences.

Benefits of DreamForge:

  • Unbounded Creativity: DreamForge unleashes a new level of creativity by producing designs that defy conventional boundaries. AI-generated designs introduce novel shapes, patterns, and aesthetics that push the limits of imagination.
  • Efficiency and Speed: Traditional design processes can be time-consuming and iterative. DreamForge accelerates the design phase by rapidly generating a multitude of unique concepts, expediting the creative journey.
  • Intricate Detailing: The AI’s ability to incorporate millions of intricate details and nuances results in designs that possess a depth of complexity that would be nearly impossible for a human designer to envision.
  • Idea Exploration: DreamForge is a powerful tool for exploring design ideas that may have been overlooked or deemed unfeasible. Users can visualize concepts they might not have considered otherwise.
  • Personalization: Users can inject their personal preferences into the design, ensuring that the final product reflects their unique style and taste.
  • Innovation Catalyst: DreamForge serves as a catalyst for innovation, inspiring designers, artists, and creators to break free from conventions and explore uncharted territories of design.

4. VisioForesight approach

VisioForesight approach is a scenario planning method that helps explorers anticipate and navigate a range of potential product futures. By crafting detailed stories of plausible yet diverse outcomes, scenario planning empowers decision-makers to be proactive, adaptable, and ready for whatever product opportunities tomorrow may bring.

Methodology

  1. Define X and Y Axes: In the context of business scenarios, the X and Y axes often represent two key dimensions or variables that influence the scenarios. Similarly, in the context of product exploration, you could define two axes that capture essential aspects of the product. These axes could be factors like ”Functionality” and ”Aesthetics,” ”Complexity” and ”Simplicity,” or any other relevant pair of attributes.
  2. Explore the Four Fields: Once you’ve defined your axes, you can divide your scenario map into four quadrants, each representing a distinct combination of attributes. For example:
    • Quadrant I: High Functionality, High Aesthetics
    • Quadrant II: High Functionality, Low Aesthetics
    • Quadrant III: Low Functionality, High Aesthetics
    • Quadrant IV: Low Functionality, Low Aesthetics
  3. Applying this Approach to Product Exploration: Let’s say you’re designing a smart medical device. You could use the axes ”Innovative Features” and ”User-Friendly Design” to create your scenario map:
    • Quadrant I: Device with Cutting-Edge Features and Intuitive User Interface
    • Quadrant II: Feature-Rich Device with Complex User Interface
    • Quadrant III: Visually Stunning Device with Simplified Features
    • Quadrant IV: Basic Device with Limited Features and Usability
  4. Benefits: Structured Exploration: This approach provides a structured framework for brainstorming and exploring different product ideas based on specific attributes or dimensions.
  5. Idea Generation: By systematically exploring each quadrant, you ensure that you consider a wide range of possibilities and avoid overlooking potential ideas.
  6. Evaluation Criteria: The scenario map offers a way to evaluate and prioritize ideas based on the attributes represented by the axes. This can help in aligning product ideas with your overall design goals.
  7. Visual Representation: The scenario map provides a visual representation of the product landscape, making it easier to communicate and collaborate with team members and stakeholders.
  8. Informed Decision-Making: By mapping out different scenarios, you can make more informed decisions about which quadrant aligns best with your target audience, market trends, and business objectives.
  9. Holistic Approach: Considering both functional and aesthetic aspects ensures a holistic approach to product design, leading to products that not only perform well but also engage users visually.
  10. Diverse Range of Ideas: By changing the attributes on the axes, you can adapt the scenario map to different products and explore a wide range of design possibilities.

Conclusion

There are many avenues for finding future products. Some require systematic work and some are based on imagination. Maybe the best results are achieved by hybrid approaches, where both aspects are applied.

This article is a preview to a wider work that brings new tools to the creators of future products, especially to support the imagination challenge of 3D printing. Stay tuned!

All comments and feedback are highly appreciated!

Pekka Ketola, August 28, 2023

On design principles for 3D printing

Why classic piano and violin are fundamentally different for the musician? A piano has keys, which give the exact pretuned sound. The musician has no power to adjust the pitch of a single key while playing. A violin fingerboard, on the opposite, gives the player a full freedom to play any pitches. For creativity, violin gives wider opportunities and less limitations.

Categorization sets limits on what we are able to design and make. If we prefer a design idea, say ”topology optimization”, this tends to push other ideas out of sight. We like to make things easier by categorizing, selecting tools, setting limits and organizing. Could we amplify the designer’s thinking space?

Why, what and how

A straightforward and practical design answers the question how an object is designed. The result is a concrete design or product. The commission defines what is designed, such as spare part for specific system. The result can be a specification or requirements document, for example.

We are interested in the wider question, why something is designed and made. What is the purpose of a system? And what might be results of this question?

In this writing I’m trying to draft principles for designing 3D printed systems by looking at nature, engineering and art. I’m not a designer. Hence my approach is more philosophical and aims to look at design from other perspectives than technical ones.

Nature

What is the aim of biological ecosystems? When there is shortage of water, plants react by decreasing the consumption. When there is plenty of light, good soil and humidity, plants speed up growth. When insects attack trees, trees warn other trees and generate ways to fight back. Over the time, evolution improves the ”designs” and all living adapts to the evolving environment.

Ecosystems aim to maintain and balance the overall system. This is fundamentally built-in in everything. All details, features, communication, collaboration in nature is fine tuned for maintaining the balance. The mechanisms are inherited and improved over the generations in flora and fauna. Also most human made systems aim to maintain and balance status quo (See: Peter Senge: The Fifth Discipline).

Our purpose and design principle 1 is Maintaining the system. When designing features for a machine, component or spare part, we can ask: How the overall functionality can be improved for maintaining the balance of a wider system? Or: How our solution maintains the balance in the surrounding context: people, machines, systems and eventually businesses.

Can we design components or entire systems that react, interact, communicate and adapt with others? What kind of technologies and features we could adopt to make objects capable to maintain the systemic purpose? We can play with transforming materials (4D printing), IoT, signalling, sound and vibration, embedded reservoirs, channels, sensors and actuators, machine learnging, and by expecting similarish features from other interacting components. Many of the maintaining ideas and features can be copied from biological systems (biomimicry).

Art

What is the aim of art? This question is explored in book Strange Tools: Art and Human Nature (Alva Noë, 2015):

”Art, really, is an engagement with the ways in which our practices, techniques, and technologies, organize us and it is, finally, a way to understand that organization and, inevitably, to reorganize ourselves.”

Creating art is a design process and requires tools. For musician the tool may be the instrument. For choreographer it may be the human body. For painter the tool consists of colors, brushes and canvas. Depending on the type of art, the tools are natural and fit with the purpose.

Art organizes ideas to entities that become perceivable. Sometimes art gives answers, but more often it raises new questions and forces us to think. Art helps us to see more. Art empowers us to think and create ideas that we wouldn’t be able to think or understand without it. For example, a musical performance can reveal emotions that you were not aware of. Leonardo da Vinci was a master in pinpointing the details by using visual effects to highlight (or hide) and give life to paintings.

Salvator Mundi. Painting by Leonardo da Vinci.

Our design principle 2 is Explaining and raising questions. When we design a product a or systems, we can ask: how the system can help us to better understand it and its’ purpose in the wider context? Why does this specific system or product exist?

Can we use technologies and solutions from arts to make things understandable, to highlight features or to communicate status? What can we do with colors, shapes, sounds, movement, materials, by breaking conventional boundaries, collaboration, by abstraction or realistic presentations, or by bringing together unexpected elements? Can we pinpoint or hide features by adding or removing material, by creating transparency by design or enabling other elements to connect with our system?

Leaf bridge was project (2018) to bring together art, biomimicry, materials, engineering and purpose.

Leaf bridge.

Engineering

”Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings.” – Wikipedia-

What is the purpose of engineering? Engineering brings together the best knowledge we have about a specific domain and challenges us to seek better solutions. It creates new technical artifacts for specific needs by bringing together the right skills, technologies, innovation and leadership.

Engineering and art are similar in many ways. Appropriate technologies, methods and tools are needed to reach the goal. Collaboration and cross disciplinarity are fundamental prerequisites in most projects. While art aims to explain or raise questions, engineering aims to give answers: this is how you do it.

Engineering solution need not be always perfect. Often good enough or better than earlier is ok. Engineering result is a snapshot in the story of technical evolution.

Our design principle 3 is Continuous improvement and technical curiosity. When we design new artefact, we need to ask: Which tools, methods, principles, competences or ideas will lead us to better solution this time? What should be different than earlier? What new is available? Should we get rid of some old thinking?

The history of mankind is the story of technical evolution, victories and continuous strive for better life. Unfortunately many of the brightest inventions have turned against us in the global scale, such as the many avenues leading to climate catastrophe.

What if all engineering would fundamentally consider the systemic implications of the solutions, going beyond single business case? Not only asking how, but also what and why? Instead of building better products, building better planet? It might be useful to understand what is the mechanism how good inventions lead to bad results over time.

Summary

Our three design principles are:

  1. Maintaining the system
  2. Explaining and raising questions
  3. Continuous improvement and technical curiosity

There has never been as many artists, innovators and engineers as we have today. We have the brightest and fast evolving technologies, materials and tools in our hands. We can collaborate globally and share ideas quickly.

Why, then, we are not really learning from the best teacher, the nature, about creating sustainable systems and environments? What would happen if we really could learn and implement?

3D printing is a globally emerging approach for creating sustaible systemic solutions. Today some of the ideas mentioned in this article can be implemented with 3D printing technologies. In the future, most of the ideas are feasible. For example, self maintaining systems are already explored in numerous research groups. Artists have started to use 3D printing and many ideas are transferred to products. 3D printing enables fast iteration and cost efficient exploration of new ideas.

3D printing eliminates many practical limitations, in the same manner as violin gives full freedom for artistic creativity.

Pekka Ketola, 3.1.2022

The sport of 3D printing

3D printing has become a standard tool for athletes. It can be used to improve ergonomy and performance in traditional sports, and to enable sports and exercising for paralympic athletes and hobbyists, in the first place

3D printing was widely present in both Tokyo Olympic games 2021 and Tokyo Paralympics 2021. Applications were seen in numerous sports and also in olympic arrangements.

Some Tokyo 2021 examples below:

Olympics

  • Olympic rings were 3D printed from recycled plastic bottles. The bottles were crowdsourced from the city.
  • 3D printing was widely applied in athletes’ footwear. Most medalists had 3D printed insoles.
  • 3D printed custom pistol grip improved eronomy and accuracy (Celine Goberville).
  • 3D printing was applied in developing innovative racing bike solutions for the Great Britain Cycling Team.

Paralympics

  • 3D printing was used to improve grip and ergonomy in special gloves, for example for wheelchair racing.
  • Bike pedal structures were designed and 3D printed to match the individual needs of athletes.
  • Custom fit crank arms and and grips were 3D printed for racing wheelchairs.
  • Para-athletes with missing fingers, for example, had 3D printed accessories (Taymon Kenton-Smith).

Comprehensive list of 3D printing examples in professional sports during the past years would be very long. It is obvious that sports is great innovation platform for 3D printing. I’m excited to see the new solutions in Paris 2024.

Extreme personalization

The atheletes need to persistently optimize their performance and anticipate the details of forthcoming competition. 3D printing can often be part of the solution. The solution must exactly fit with the athelete’s needs at a specific point of time for extreme performance. For example, a sudden injury may change the need rapidly.

Solutions are created with skilled teams where the athlete is key person in the collaborative design team. Ideas can be copied from elsewhere, but the final product is always fine tuned solution, based on innovation, data, design, production, iteration and testing.

Reaching the best possible quality is a fundamental requirement. Sometimes the solution needs to be available in couple of hours, for example as unexpected need for a spare part. The team needs to perform and be ready for solving tricky problems.

Translation to normal life

Athletes are forerunners in finding ways how 3D printing can serve us all. Solutions developed for top performance can be translated to wider uses, in the same way as Formula1 developers create innovations that are applied in car and other industries, such as aerodynamics and carbon fibre technology.

In my vision, Olympic 3D printing innovations will translate, for example, in

  • Developing fast and high quality idea-to-implementation processes
  • Enabling tasks that were earlier impossible for individuals
  • Developing task specific tools and accessories for wide range of professions
  • Solving problems related to ergonomy and occupational health
  • Creating cost efficient solutions for accessibility
  • Innovative uses of emerging 3D printing materials
  • Design innovations
  • Developing functional products.

Are you interested to collaborate on developing sports inspired solutions with the help of 3D printing? Let’s talk!

Links

Why (the idea of) freedom of design matters?

People who don’t know too much think that with 3D printing you can create almost anything, and that there is complete freedom of design for practitioners. People who know too much tell us this is not true. Which point is more valuable?

I studied for my master’s thesis ~1990s. My major was computer science. Only at the end of the studies it became possible and economically feasible to have an own computer at home! At that time, nobody (except some visionary gurus) really believed that computers would one day be everywhere in our lives. But we had the emerging idea that something like that might happen.

In my first job as designer we were developing the first Nokia communicator with the idea that Internet would be in everybody’s pocket. Hah! We hardly had functional Internet on the planet. The idea of everybody having a mobile phone was crazy. Not to mention the possibility of having Internet in the mobile phone, available for online surfing everywhere. But we had the vision driving the development. Quite soon we sent the first ever email from a mobile phone.

Now and then we see phenoma that inspire global thinking in masses. 3D printing is such thinking platform! The sole idea of 3D printing may be more valuable than the technological reality today. It empowers millions of people to safely envision about the biggest opportunity of new level of manufacturing and products. To think about what might be possible, even when you don’t know enough about the technology. Dreaming is the most powerful innovation tool.

Thinking platforms are needed to collaboratively understand or dream of what might be possible, and then go for it. It is crucial to be able to safely and creatively produce knowledge about the possible future. It is motivating for all disciplines to set goals that seem to be impossible to reach even with sufficient resourcing. With great goals humans can achieve the impossible.

Disruptions have tendency to come unnoticed and quietly. And 3D printing is next on the line for global disruption. It generates a number of related opportunity avenues, such as materials innovation, logistics, business models and design methods.

It really doesn’t really matter if freedom of design is entirely true today. It matters that we have the inspiring possibility to think about the new design space and to develop wild ideas. Most of the dreams will realize at some point of the time.

Pekka Ketola Jan. 22nd, 2020

Local manufacturing and rapid products

This is short envisioning about local manufacturing and 3D printing. If you are in a city or industrial area, imagine drawing a circle of 100m diameter around your location. What are the activities taking place in the area? Look out from your window and simply list what you see.

There are probably offices, homes, shops, services, small and large businesses, bikes and cars, maybe kids playing. Everyday activities take place, such as renovating, maintaining, adjusting, breaking things, repairing, fixing, improving, problem solving and generating new ideas. There is continuous need for solutions to make life easier.

Local manufacturing is the concept of making products close to customers and users. The idea is not new. Thousands of years people have made all they need close to where they are using the available simple materials, and often asking help from the community.

Global competition and strive for efficiency has led to centralized and optimized manufacturing in bigger volumes and in places where the production is most efficient. Local manufacturing has not been the winning concept in recent decades. However, new era seems to be starting due to the demands for sustainability, circular economy and digitalization.

We have 3D printing solutions to design, manufacture and deliver all kinds of products, spare parts and components in less than 24 hours. This exists today, but it is not yet reality everywhere (as is the case with all future cracks). Do you know where is your nearest local service to have products or spare parts 3D printed?

What kind of 3D printed parts the local customers inside your 100m radius might need? For example at home:

  1. Spare parts to fix broken handles, toys, gadgets.
  2. Special tools to improve accessibility, health, safety or ergonony
  3. Affordable design objects to make things more personal or esthetic
  4. Special holders for lights, cables, bike appliances, etc
  5. Prototypes to support design drafting or ideation project
  6. Appliances for pets (dogs, cats, aquarium).
  7. Tools and parts for hobby, such as knitting or sports

lamppu.jpg

Figure: 3D printed table light. 3D printed with wood composite, plastic and metal. Design: Origo Engineering. 3D printing: 3DStep.

Rapid products

3D printing is ready for competitive local manufacturing and new business models. Faster technologies, better software and widening offering of materials are introduced every week. Maybe the concept for future is rapid product.  Today’s 24 hour delivery time will shrink to <1h deliveries with the help of smart design tools, very fast 3D printers, digital platforms and innovative delivery strategies.

What will be the extreme customer experience for rapid products in the future? It will be close to magic. It is simple. Almost like using a magic wand. You express your need or idea to the service (or the smart device has already told what’s needed). And sooner than you expect, the product is delivered to you with a robot or drone, by the girl next door, or as virtual product proposal into your smart device.

Business

Establishing local manufacturing business for rapid products and local manufacturing is not rocket science or huge investment. You can start the business from your couch with a laptop and with a 1000€ 3D printer. Finding the correct business model is the most tricky part. In the beginning the business will be based mostly based on small transactions of less than 50€. Developing value adding services that help the local community to learn and try the rapid product possibilities may be the fast track to increase the sales. Or maybe it is simply because of the speed of solving product problems.

The business can expand further, for example,

  • by scaling up your manufacturing capability with larger fleet of 3D printers ad other tools,
  • by digital service innovation and crowdsourcing design work.
  • by developing collaborative business with other local manufacturers for wider solutions offering,  and
  • by creating explicit value (concrete problem solving) or implicit value (customer experience) for your customers.

If you had 5000€ budget, what kind of local manufacturing service would you start?

Pekka Ketola, pekka.ketola@3dstep.fi

 

 

3D printing and the team skills

3D printing and the digital development processes will change the team dynamics and establish new ways to work. In this article I will discuss some of the emerging patterns.

  1. Collaboration. Collaborative design proposes that products are designed together with the users. Collaborative product or service development is not new concept. The idea is in the heart of established practises, such as user centered design, usability engineering and service design. 3D printing is based on the affordance that products can be designed and manufactured faster with personalized features. It makes sense to consider new kinds of collaborative teams where customers, end users and the engineering team work together to exploit the affordances and user input in full. When the design and manufacturing cycles are fast and flexible there is possibility to
    1. Create more design iterations.
    2. Make more product prototypes and variations without major cost or time impact.
    3. Develop the product with users and customers in fast development cycles.
  2. Prototyping. ”Prototypes are super expensive”. This is not (always) true with 3D printing. The step from CAD file to first concrete product is short. Making changes in the prototype or simulation is far less expensive than making changes in the final product. With 3D printed prototypes, it is often possible to make the first versions almost with zero cost using inexpensive FDM technology, before proceeding to the actual implementation and materials, such as titanium. The teams need to learn to apply active prototyping and maximise the support and experiences the prototypes can provide for design and customers. There is also the marketing aspect for using and showing the prototypes already in the early phases of the design process.
  3. Role of purchasing. All larger manufacturing companies have dedicated teams for purchasing stuff needed for the main business, such as components and materials. As purchasing manager, what do you buy when you buy 3D printed components or digital spare parts? The question is often about fast on-demand manufacturing, with customer specific twists in the products. The purchasing teams need to develop skills to play with additive manufacturing platforms and services, rather than buying, lets say 10 000 units of component X. Or is there a fast shortcut between product development teams and 3D printing services? Accordingly, 3D printing services need to figure out what are the new processes and connections needed to serve the big customers.
  4. New design processes. Sustainability, circular economy, recycling, on-demand parts and other emerging phenomena ask for better design and manufacturing processes, with new requirements coming from the society and customers. For example, how do you:
    1. Design for 3D printable spare parts (already in the original product)
    2. Design for recycling
    3. Design for personalization

The concept of product design need to raise to the new level, where designer solves also the problems and needs that will come at the end of the product lifecycle. This is rarely handled in contemporary product development.

Conclusion

3D printing is not only about technology, processes and materials. It is also about the new hard and soft skills and behaviours needed in teams. Collaborative product development or the idea of super active prototyping are competences that need to be exercised, piloted and tried out.

What do you think?

Pekka Ketola, CEO 3DStep Oy

3D-tulostus ja uudet pelimerkit

Pekka Ketola, 13.3.2018

3D-tulostuksen sovellusalueiden ja liiketoiminnan löytäminen ja löytyminen riippuvat nykyisten toimialueiden laidoilla toimivista yllättäjistä – uusien näkökulmien tuottajista.

3D-tulostuksen teknologia on ollut nousujohteisella polulla 1980-luvulta asti. Sen merkittävin kehitys, erityisesti viime vuosina, on tapahtunut samanaikaisesti sekä edelläkävijöitä edustavien kotitulostajien toiminnassa, että teollisuuden sovelluksissa. Molemmilla rintamilla kysytään kuumeisesti: mihin ongelmaan 3D-tulostus tarjoaa parhaat ratkaisut?

3D-tulostus on teknologia-alusta, jonka hyödyntämiseen ei ole vielä vahvoja loppukäyttäjätarpeita. Tilanne on samankaltainen kuin Internetin syntyaikoina 1990-luvulla. Silloin vaikutti, että Internet soveltuu parhaiten akateemisen maailman tiedonvälitykseen, mutta sillä ei tule olemaan varsinaisia kaupallisia sovelluksia, varsinkaan koska monet toiminnot ovat käyttäjille ilmaisia. Leijonan Luolasta Internet ei ehkä olisi löytänyt sijoittajia, koska näkymät eivät olleet kummoiset ja riskit olivat suuret.  Mitä sitten tapahtuikaan? Internet kehittyi nopeasti infrastruktuuriemme välttämättömyydeksi ja talouden moottoriksi, jota ilman emme enää selviäisi.

Mitä Internetin historiasta voidaan oppia 3D-tulostuksen ymmärtämiseksi? Esimerkiksi, meiltä puuttuu toistaiseksi yhteinen ruohonjuuritason käsitys 3D-tulostuksen mahdollisuuksista: Miten se konkreettisesti luo kaupallista toimintaa, millaista osaamista hyödyntämiseen tarvitaan, miten käyttäjät voivat hyödyntää teknologiaa ja miten toiminnan pitäisi organisoitua.

3D-tulostuksen moottoreina ovat erityisesti korkeakoulut, joissa 3D-tulostuksen ajatukset ja osaaminen kehittyvät ja viriävät eri muodoissaan. Kun kypsyystaso on riittävä, alkaa kaupallistamisen kultaryntäys, jolloin sijoittajat tekevät kaikkensa ottaakseen uudesta teknologiasta ja siihen patoutuneista odotuksista kaiken hyödyn. Olemme lähestymässä tuota pistettä.

Mikä Internetin kehityksessä oli ainutlaatuista? Se ei kehittynyt kenenkään yksittäisen toimijan ideoista tai liiketoimintainnovaatiosta. Internetin menestyksen laukaisivat toiminnan laidoilla olevat innovaattorit, ns. outlierit: siis loppukäyttäjät ja odottamattomat toimijat, jotka loivat omia kummallisia ratkaisujaan Internetin hyödyntämiseksi. Kokonaisvaikutus syntyi, kun näitä toimijoita oli riittävän monta ja riittävän erilaisia, ja koska Internetin maailma oli avoin kaikille. Hyödyntäjiä löytyi niin kaupallisista kuin ei-kaupallisista piireistä. Kukaan yksittäinen toimija ei ollut Internetin omistaja.

Internetin kehitystä edistivät merkittävästi politiikat, erityisesti USA:ssa. Näillä estettiin yhtäältä monopolien syntyminen (FCC) ja toisaalta luotiin yhteisiä standardeja (IETF, W3C). Erityisesti IETF ja W3C kuuntelivat aktiivisesti loppukäyttäjiä ja loivat edellytyksiä Internet -teknologioiden tarpeisiin vastaaville standardeille, sekä inkrementaaliselle ja radikaalillekin kehitykselle. Tänä päivänä vastaavaa toimintaa tapahtuu useissa avoimissa (open source) kehityshankkeissa, sekä standardointiorganisaatioissa (mm. ASTM).

Internet kehittyi standardien ansiosta kaupallisten palveluiden ja arvoketjujen alustaksi, joka mahdollisti palveluiden ja tuotteiden ostamisen ja myymisen. Tärkeää oli, että kaupallisesta toiminnasta tuli demokraattista: kuka tahansa pystyi hyödyntämään tarjolla olevaa teknologiaa ja luomaan uutta liiketoimintaa. Ei siis pelkästään olemassa olevat vahvat brändit.

Ketkä hyötyivät kehityksestä eniten? Laidoilla olevat toimijat ja outlierit, jotka saivat työkalun unelmiensa toteuttamiseen. Siis yksityishenkilöt, keksijät, pienyritykset, start-upit ja yritykset, joiden toiminnan suuryritykset ja monopolit olivat käytännössä aiemmin estäneet. Dominoivien puhenlinoperaattoreiden rinnalle syntyi satoja Internet -palveluntarjoajia. Syntyi muitakin uutta kommunikaatioteknologiaa hyödyntäviä alustaratkaisuja, kuten Netscape ja Google.

1990-luvun loppupuoli näytti, kuinka hyvään arkkitehtuuriin ja systemaattiseen suunnittelutoimintaan pohjautunut niche-ilmiö kasvoi massojen de-facto -toiminnaksi. Internet itsessään ei ollut rahasampo ja sijoituskohde – joskin verkkoteknologioiden tarjoajat menestyivät. Isoin business ja muutos syntyi Internetin mahdollistamista uusista ilmiöistä ja palveluista. Voittajia eivät olleet perinteiset kommunikaatioalan suuryritykset, vaan täysin uudenlaiset toimijat.

Uudet toimijat loivat onnistuneita esimerkkejä ja prototyyppejä ansaintamahdollisuuksista, kuten edelläkävijänä Intranet-sivustoihin erikoistunut vaasalainen VisualWeb. Suurempien toimijoiden ja investorien, kuten IBM ja Microsoft, oli pakko kiinnostua ja reagoida. Reaktio oli nopea ja voimakas. Käynnistyi luova tuho, joka synnytti nykyisen tietoyhteiskunnan. Lähes kaikki yllättyivät uuden horisontin avaamista loppumattomista mahdollisuuksista. Internetin kehityksessä merkittävänä askeleena oli langattoman tekniikan nousu WiFin ja puhelinverkkojen datapalveluiden muodossa. Tämän taustalla oli luova yhteispeli, jossa olivat mukana infrastruktuurikehittäjät (top-down) ja loppukäyttäjien palveluita tuottavat yritykset (bottom-up).

Mikä oli laidoilla olevien toimijoiden rooli Internetin kehityksessä? Kaikki etsivät uusia arvontuottomahdollisuuksia, joiden kokeilun ja prototypoinnin Internet mahdollisti. Kokeilujen erilaisuus, mielipiteiden ristiriidat ja ideoiden yhteentörmäykset loivat tilanteen, jossa vääjäämättä syntyi uusi toiminnan avaruus. Kansainvälisenä yhteisönä opittiin kollektiivisesti, Internetin hengessä, kuinka teknologia hyödyttää eri toimialueita.

Mikäli Internetin kehitys olisi ollut yhden tai muutaman toimijan käsissä, informaatioyhteiskunta ei olisi syntynyt samalla voimalla, nopeudella ja monipuolisuudella. Vastaavasti, jos Internet olisi ollut vain suljetun sisäpiirin kehityshanke, niin kehitys ja innovaatiotoiminta ei olisi skaalautunut.

Mitkä ovat johtopäätökset 3D-tulostuksen tulevaisuuden suhteen?

Teollisen 3D-tulostuksen kaupallisesti menestyneitä sovelluksia on vasta kourallinen. Erinomaisia showcaseja löytyy sen sijaan runsaasti mm. auto- ja lentokoneteollisuudesta. Teollisuuden osalta puhutaan enemmänkin muutamasta hyötyjä tuottavasta perusperiaatteesta ja ideaalista, kuten painon pienentämisestä ja rakenteiden optimoinnista. Suuren mittakaavan ja laajan soveltamisen hyötyjä 3D-tulostus ei tuota ihan vielä.

3D-tulostuksen täysi hyöty ja vallankumous realisoituvat vasta, kun ekosysteemin laidoilla olevat toimijat pääsevät riittävän monipuolisesti, suurella rintamalla ja toisiaan kirittäen kokeilemaan ja luomaan uuden toiminnan prototyyppejä. Prototyypit ovat uusien tuotteiden lisäksi uusia palveluketjuja, uusia ammatteja, ja uusia tapoja vastata tunnettuihin ja piileviin tarpeisiin. On kyettävä kokeilemaan myös niitä järjettömiä ideoita. Kuka olisi 1990-luvulla uskonut Instagrammiin, Snapchattiin, tai Facebookiin?

3D-tulostuksen maailmanvalloitus on hyvissä lähtökohdissa. Teknologialla useita vahvoja kehittäjiä kaikilla mantereilla. Sen ympärille on jo syntynyt miljardiluokan kaupallista toimintaa, korkeakoulut luovat osaajia ja toiminta on luonteeltaan digitaalista – siis globaalia ja skaalautuvaa.

Mitä sitten puuttuu?

1.    Ideoita. Erityisesti ekosysteemin reunoilla olevien toimijoiden on aktivoiduttava ja keksittävä uudet sovellukset, liiketoimintamallit, disruptiot ja toiminnan prototyypit. Osa näistä voi nousta perinteisestä valmistavasta teollisuudesta, mutta kuten Internet osoitti, vähintäänkin 80% uudesta liiketoiminnasta tulee syntymään aivan uusista käytännöistä.

2.    Investointeja ja rahoituksen innovaatioita. 3D-tulostus koetaan edelleen suuren riskin huonosti ennakoitavana toimintana. Vain rohkeimmat edelläkävijät ovat liikkeellä. Teknologian jalkautuminen erityisesti Suomessa on kiusallisen hidasta verrattuna mm. Saksaan, Belgiaan ja Espanjaan, vaikka loistavaa kehitystä tapahtuukin mm. Pirkanmaalla.

Ideoiden ja prototyyppien kehittyessä 3D-tulostuksen tarjoamat mahdollisuudet kypsyvät kuitenkin nyt nopeasti. Edessä on kultaryntäys, jossa pian jaetaan uudet pelimerkit. Miten sinä olet pelissä mukana?

Suomen 3D-tulostuksen strategia

Mikä on Suomen 3D-tulostuksen (additive manufacturing) strategia? Tarvitaanko sellaista?

Poikkeuksetta kaikissa kansallisissa ja kansainvälisissä tulevaisuutta ennakoivisssa selvityksissä 3D-tulostus on nostettu yhdeksi tulevaisuutta, teollisuutta ja työpaikkoja merkittävästi muuttavista teknologioista. Aihe on vahvasti mukana myös Eduskunnan tulevaisuusvaliokunnan selvityksessä Suomen sata uutta mahdollisuutta – Radikaalit teknologiset ratkaisut. On mielekästä kysyä: kuin Suomen pitäisi tähän mahdollisuuteen suhtautua?

3D-tulostus on noussut strategiseksi aiheeksi useilla tasoilla. CECIMO (European Association of the Machine Tool Industries) on julkaissut eurooppalaisen lisäävän valmistuksen stategian. Iso-Britannia on laatinut kansallisen tason strategian, samoin Dubai. Ruotsissa Swerea (Swedish Arena for Additive Manufacturing of Metals) rakentaa kansallista 3D-tulostuksen yhteistoimintaa. Aktiiviset maat ja kaupungit, kuten Singapore, perustavat voimakkaita 3D-tulostuksen keskittymiä. Standardoinnin (ISO) kautta teknologialle luodaan yhteisiä globaaleja käytäntöjä ja pelisääntöjä.

Iso-Britannian 3D-tulostuksen strategia tähtää huomattavan markkinaosuuden varmistamiseen alan nopeasti kasvavassa liiketoiminnassa, uusien työpaikkojen luomiseen, sekä tuotannon uudistamiseen. Haasteet ovat samankaltaisia kuin Suomessa: useimmat PK-yritykset eivät tunne 3D-tulostuksen perusasioita eikä sen tuomia liiketoimintamahdollisuuksia.

Suomessa 3D-tulostuksen toiminta on kansainvälisiin toimijoihin verrattuna edelleen vaatimatonta, vaikka paljon hyviä asioita on jo liikkeellä. Suomessa on n. kaksikymmentä kaupallista 3D-tulostuksen yritystä, monissa organisaatioissa teknologia on osa päivittäistä toimintaa ja edelläkävijäyritykset hyödyntävät jo 3D-tulostusta sarjavalmistuksessa. Korkeakouluissa, ammattiopistoissa ja kouluissa on käynnissä suuri määrä hankkeita, projekteja ja koulutusratkaisuja. Maakuntatasolla, kuten Pirkanmaalla, aiheeseen investoidaan. Alan huippututkimusta tehdään tutkimusorganisaatioissa ja yliopistoissa. TEKES myöntää rahoitusta 3D-tulostusta edistäviin ja hyödyntäviin projekteihin. Muutamia mainitakseni.

3D-tulostuksen kanssa ollaan siis liikkeellä ja osaamista on syntynyt, mutta tässä vaiheessa toiminta on varsin sirpaloitunutta, siiloutunutta ja haparoivaa, eikä osaamisen ja kokemusten kehittyminen kykene tuottamaan merkittävää synergiaa. Kireässä taloustilanteessa paljon rahaa hukataan päällekkäiseen ja liian vaatimattomaan tekemiseen. Hyvää ei saa halvalla.

Ehdotus

Aika on kypsä Suomen 3D-tulostuksen vision ja strategian luomiselle. Strategia yhdistää liiketoiminnan, koulutuksen ja tutkimuksen, ja luo perustan 3D-tulostuksen kansainvälisen kilpailukyvyn syntymiselle ja systemaattiselle kehittämiselle. Onnistunut strategia aktivoi myös julkiset ja yksityiset investoinnit alan kehitykseen.

Suomen3Dstrategia

Suomen 3D-tulostuksen strategia on Suomen näköinen. Se voi lainata hyväksi havaittuja elementtejä muilta ja on välttämätöntä kytkeytyä kansainvälisiin toimintoihin. Pienenä maana vahvuutemme löytyvät erityisesti korkeasta osaamistasosta eri teknologia-alueilla, monialaisesta yhdesssä tekemisestä ja tekemisen meiningistä, sekä toimijoiden keskinäisestä luottamuksesta. Strategia voi olla perinteinen, joka kehittää olemassaolevia toimintoja. Tai voimme luoda myös sinisen meren strategian, jossa pelisäännöt luodaan puhtaalta pöydältä. Näitä pitää tuumia yhdessä.

Luodaan Suomen yhteinen 3D-tulostuksen visio, strategia ja aletaan tekemään. Oletko mukana?

Pekka Ketola 22.10.2017 / pekka.ketola@3dstep.fi

Ps. Pirkanmaan 3D-tulostuksen toimijat kokoontuvat 12.12. 2017 klo 12. Tampereella. Tällöin pohditaan strategisia kysymyksiä maakuntatasolla. Lisätietoa LinkedIn -ryhmässä 3D Pirkanmaa.

3D printing and the customer insights. Case: Car Industry & spare parts

3D printing has opened wonderful opportunities for collaboration between customer and the company. This dialogue is useful and creates value for all. It is no wonder that companies like Local Motors, Volkswagen and Shapeways take community management and co-development with 3D printing seriously.

Car industry has found maybe the largest number of 3D printing applications. It has also managed to connect users, engineers and the industry in innovative ways. However, there are still untapped possibilities. I will discuss some examples of the new value generation and open horizons for industrial collaboration for better customer engagement.

1. Connect company with user insights

3D printing aggregators, such as Thingiverse, provide rich world for exploring do-it-yourself 3D-printables. People are solving their concrete needs with all kinds of tools and parts, such as GoPro camera holders, and sharing the results for others to use. Often the DIY part has features that are far better than the original from the manufacturer.

Manufacturing companies are following these online forums in order to get insights on the next products, understand needs that are related to the uses of their products, and also to identify talented designers and innovators.

Some companies are even smarter. They actively engage and invite online talents to join their development projects and design challenges, offering soft rewards like great community of co-developers, learning journeys and recognition, or tangible rewards. For example Local Motors has used online community for the development of the 3D printed cars.

dia11.png

2. Use community to develop better parts

Spare parts is a promising 3D printing application for car industry.  Mercedes Benz is starting the manufacturing of metal 3D printed on-demand spare parts for older trucks. The parts are manufactured from the digital models that either exist already or are reverse engineered from existing parts.

”Using additive manufacturing, the company was able to achieve parts with almost 100% density, greater purity than conventional die-cast aluminium parts, very high strength and thermal resistance – making the process particularly suitable for small batches of mechanically and thermally stressed components.” Source

17c550_02-1024x681

Mercedes Benz 3D printed spare parts. Source.

Also Daimler is developing 3D printed spare parts manufacturing, especially for plastic parts using SLS technology. The current offering covers more than150 on-demand parts.

Beyond brand specific solutions there are also companies offering spare parts for any applications. For example, Spare Parts 3D from Singapore offers a general spare part service for all and everywhere, mainly printed with plastics. The company’s mission is to digitalize the stocks. Also this service is based on the digital community. 3D printing service offices anywhere can join and become local service providers in Spare Parts 3D network. Target delivery time for spare parts is 24 hours.

pic-a

The promise and value is not only in the spare parts. Rapid manufacturing of car spare parts enables fast response to developing user needs and emerging product problems. For example, when the original spare part lacks a feature or tends to break in certain way, it can be re-designed and then printed without delays. The concept of better parts emerges. The customer gets better solution (maybe not CE approved, though) and the original manufacturer gets concrete proposals for improving the products. Of course, only if the manufacturer has a method for discussing and collaborating with the customers.

Case: Avant hydraulic block

Avant loaders are high quality machines for many kinds of jobs that require horsepower in compact and ergonomic form. The engine has hydraulic block of 2.9 kilograms with over 30 different parts. Finnish 3D printing company 3DStep re-designed the block for 3D printing, together with engineering company Enmac. Special attention was paid on the improved functionality and faster installation. The resulting part weights less than 400g:s and is made from one component. This part is a typical example of 3D printed better part. It is lighter, integrated and provides better functionality than the original.

avanttecno-machine      avant3d

3. Empower the engineers with 3D printing

Volkswagen has demonstrated that 3D printing can have crucial role in optimizing car design, manufacturing and maintenance. VW factory in Portugal makes over 100 000 cars every year. This factory is specialized in the manufacturing innovations related to new models.

image007_b353aq

The poka-yoke makes it possible to position and assemble screws without damaging the wheels. Source.

Desktop 3D printers were brought to help the design and manufacturing of new cars. During 2016 more than 1000 tools were 3D printed on-demand. Volkwagen reports major savings in making new tools (95%) and radically decreased manufacturing costs. The biggest shift was mental: taking the step from closed R&D environment to the use of open innovation culture.

4. Think about your 3D printing strategy

The global ecosystem of spare part catalogues, service providers and crowdsourced designers is forming right now. The open ecosystem will straightforwardly serve the customer and engineer needs rather than the company business strategy. From the company perspective, the business is shifting from dealing parts and logistics to dealing with copyrights and mastering the creative developer community.

3D printing is an opportunity to renew the company business, digitalize services and build cost-efficient solutions for logistics, maintenance and production. Any company working with cars, loaders, trucks and other vehicles needs to study the business opportunities and new avenues of competition for the next 1-3 years. 3D printing will change the car industry from village garages to manufacturing plants.

Take coffee and think:

  1. How your business could be improved with 3D printed parts and tools?
  2. How your customers could be co-developers?
  3. How you can try out 3D printing in your business?

exhibit00_the-future-of-spare-parts-is-3d670.jpg

Views on spare parts business. Source: Strategy&

– Pekka Ketola, CEO 3DStep –


 

3DStep is the scandinavian forerunner in 3D printing business. Our mission is to make 3D printing business as usual. 3DStep factory and innovation centre locate in Ylöjärvi, Finland.

3DStep provides all you need from idea generation to design, optimisation, prototypes, serial additive manufacturing (metals, plastics), training and strategy development. 3DStep is your trusted partner for spare parts and better parts.

3dstep7

 

3D Printing Book Corner

Learning materials for industrial and professional 3D printing in Finnish and in English. All pointers with tag FREE are free to download. New titles are added frequently.

In spite of digitalization and smart systems, it is difficult to find proper publications on 3D printing. This site was created to compile the latest research reports and other publications in one place. I hope this page is useful for you! Best regards, Pekka


Please propose improvements and new pointers to books, reports and other prints and e-prints via the comment box below.

1. Landscape

2. Getting started

3. Business

4. Workflow

5. Design & optimisation

6. Materials & reports

7. Manufacturing & construction

8. Post processing

9. Resources

10. IPR and 3D scanning

  • 3D Printing, Intellectual Property and Innovation – Insights from Law and Technology (2017). https://books.google.com/books/about/3D_Printing_Intellectual_Property_and_In.html
  • Abbot, E. Reconstructing History: The Ethical and Legal Implications of 3D Technologies for Public History, Heritage Sites, and Museums, Huron Research, July 11, 2016, http://bit.ly/2QCvsnw
  • Mendis, D. Going for Gold—IP Implications of 3D Scanning & 3D Printing, CREATe, Nov. 29, 2017, http://bit.ly/2Nm8B1B
  • Billingsley, S. Intellectual Property in the Age of 3D Scanning and 3D Printing, Spar3D, July 25, 2016, http://bit.ly/2POhKwL.
  • Doctorow, C. Why 3D scans aren’t copyrightable, Boing Boing, June 21, 2016, http://bit.ly/2NnQiJq
  • Doctorow, C. 3D digitisation and intellectual property rights, Jisc, January 17, 2014, http://bit.ly/2xtl3ls
  • Shein E. Who Owns 3D Scans of Historic Sites. CACM Vol 62 No 1, Jan 2019. Pp 15-17.
  • Wachowiak, M.J., and Karas, B.V. 3D Scanning and Replication for Museum and Cultural Heritage Applications, JAIC 48 (2009), 141–158, https://s.si.edu/2NYouuN

11. 3D printing in science fiction

  • Gibson, William. The Peripheral. Berkley, 2014. Explores advanced technologies like ”fabricators,” resembling futuristic 3D printers, in a dystopian setting.
  • Doctorow, Cory. Makers. Tor Books, 2009. A novel about a near-future world where 3D printing and micro-manufacturing revolutionize industries and creativity.
  • Stephenson, Neal. The Diamond Age: Or, A Young Lady’s Illustrated Primer. Bantam Books, 1995.
    Features advanced molecular manufacturing, a speculative precursor to 3D printing technologies.
  • Temple, William F. Four Sided Triangle. Gnome Press, 1949. An early exploration of the concept of molecular duplication, akin to bioprinting, later adapted into a 1953 film.
  • Bear, Greg. Blood Music. Arbor House, 1985. Explores self-replicating biotechnologies, which resonate with the themes of advanced 3D bioprinting.
  • Vinge, Vernor. Rainbows End. Tor Books, 2006.
    Set in a world where ubiquitous computing and advanced manufacturing, including 3D printing, have transformed society.
  • Gibson, William. Count Zero. Arbor House, 1986.
    Features automated and decentralized production, highlighting early conceptualizations of additive manufacturing.
  • Clarke, Arthur C. Profiles of the Future: An Inquiry into the Limits of the Possible. Harper & Row, 1962.
    Discusses future technologies, including concepts resembling 3D manufacturing and its societal impact.
  • Scalzi, John. The Collapsing Empire. Tor Books, 2017. Includes elements of advanced manufacturing in its depiction of a highly developed interstellar society.
  • Lem, Stanisław. Return from the Stars. Harvest Books, 1961. Describes ”betryzing,” a form of futuristic manufacturing and replication technology similar to 3D printing.

Publication proposal:

Takaisin

Your message has been sent

Varoitus
Varoitus
Varoitus
Varoitus

Varoitus!

Biomimicry: Products by Nature

During millions of years the Nature R&D has created products, services and systems that are unbeatable in strength, features, energy efficiency and purpose for function.

They meet the technical, individual, social and survival requirements. Some of the products are outliers, very strange experiments, that have shown the way for the breakthrough innovations and strategic novelties (Ref. Välikangas, Strategic Innovation).

20170114_112315 20170114_113730

In Nature products, form always follows the function – a principle often valued also in industrial design of our times. The details in microstructures, such as bones, or larger macrostructures, such as spider webs and trees, are very difficult to copy. We have major difficulties in copying the same efficient structures, materials and adaptability in products made by man.

The advances in 3D and 4D printing technologies and new design tools empower us to copy Nature. The approach is called biomimicry. 3D design software and 3D printers are already able to create structures, forms and features that are directly copied from Nature. 3D design tools start to have functions that allow the designer to implement biomimicry and topology optimisation.

topologiaesimerkki-pieni topology-tuoli biomimicry-bone

Figure: 3D printed structures with biomimicry

New requirements

The capability of applying biomimical features in product design will trigger new needs and requirements for the next generation products. The requirements may be, for example, radical weight optimisation, flexibility of metal parts, resilience or better energy efficiency.

Parametric design is a core approach for biomimicry. The next generation design softwares will have parametric design as a standard feature. Accordingly, future product designers need to have capability to observe and understand biomimic rules, and translate those into product features.

So what?

Biomimicry opens new avenues for making great optimised products using industrial manufacturing systems, especially with 3D printing. Although Nature has created fantastic and rich variety of products, the mankind has not been very good in creating products with similar efficiency and sustainability.

Biomimicry is currently applied only in limited ways in our design processes. However, there are already great examples in architecture and large structures, for example in buildings and bridges.

e200ec4aba8e10ed3cdcfedacfb9dd0e bridge

Figures: Left: Dynamo Stadium, Russia. Right: the first 3D printed pedestrian bridge in Spain (Acciona, IAAC).

Our next steps in education, product development and manufacturing should include:

  • Imagination: We must develop better capabilities for wild imagination in product development. Next generation products are built differently, increasingly with the ideas from nature.
  • Outliers: Next generation products are today’s outliers, rather than evolution from the mainstream products. We need to have curiosity to explore and study the unlikely.
  • Right questions: Biomimicry optimizes the function. Hence the designer needs to keep asking: What the design needs to do and why it needs to do that?
  • Product evolution:  Nature is efficient in iteration, continuous prototyping, serendipity and learning from failures. Biomimicry leads us to new product development processes.
  • Tools: Although 3D printers can implement biomimicry, they are not optimized for that. We need to develop better 3D printers and materials that open the new cost efficient industry for biomimic products.

 

References

  • Parametric design. https://en.wikipedia.org/wiki/Parametric_design
  • Strategic Innovation – The Definitive Guide to Outlier Strategies (2015).  Liisa Välikangas; Michael Gibbert

 

(c) Pekka Ketola, January 2017

Reactions

Why people turn down the opportunity with 3D printing?

During the past year I have discussed with several industries and disciplines about the possibility to apply 3D printing technology in their activities in some form or another. I have been curious about the new opportunities and visions people create when they are faced with new technology, and also about the fears and sceptisism.

google 3dp

Metal 3D printed part

The discussions have taken place with people from manufacturing, construction, education, arts, making of musical instruments, bike builders, museums, designers, researchers, handcrafts, subcontracting, OEM, and many more.

In most cases the discussions and first reactions take similar paths: ”Our business is so conservative and traditional that I don’t see 3D printing coming into our activities in any way. The technology is far too expensive for us. And I believe, 3D printing is not mature enough or reliable for our business.” And they are right. This is of course the case when you come from a tradition and have established well-working and optimized practises.

Does this sound familiar? The experiences and encounters are more or less similar among all 3D printing evangelists and practitioners when they discuss with nonbelievers.

Simultaneously exploring the same industries and disciplines yields numerous examples and use cases how people already apply 3D printing in that specific application, industry, or discipline, and generate revenues with the new technology. The same observation emerges by looking at the industry forerunners and industry reports. 3D printing is applied in new areas and applications every day.

 

”No additive process (3D printing) can duplicate strength of the base material that could have been cast, moulded or machined from bar, let alone compete with the complex structures of composites” (Bike expert, 2013)

”First metal 3D printed bicycle frame”, ”Custom 3D printed titanium mountain bikes”, ”Robot Bike Company teams with AM experts on custom 3D printed bike frame”, ”Custom 3D Printed Carbon Fiber Bike Frame” (News titles on 3D printing and bikes, 2016)

What can we learn?

  • Forerunners do change the industry. Whatever business you think of, there is already somebody applying or exploring 3D printing. The number of these forerunners is overwhelming. And they seem to turn exploration and demonstrations into new businesses very quickly.
  • We are dealing with the phenomena of fast and slow thinking (Kahnemann). This is something deeply human which we can’t avoid. Fast thinking is automatic reaction that focuses on maintaining status quo and safety. It is often irrational and based on the incomplete, even conflicting, information that we have in the active memory. To my mind, forerunners are masters in slow thinking – combining and creating new information with deeper thought, and passing the phase of fast thinking without damage.
  • There are knowledge gaps. It is obvious that most of us don’t know enough about 3D printing and current status. And why should we? The technology is developing fast and it is really worksome to get proper information beyond the hype texts, successful demonstrations (forgetting the failed ones) and videos.
  • Consistency. It is interesting that the protective attitude against applying 3D printing is so similar across people and professions. Why guitar builders think that 3D printing will never come to their business? Why metal manufacturing company uses exactly the same words to turn down the opportunity?

 

3dvarius and classical

Classic violin and 3D-printed electric violin 3DVarius play together

The industrial renaissance and digitalisation, where 3D printing is one essential element, is a great task for all educators, knowledge generators and advocates. We all will be challenged by the new opportunities, the inefficiency of old practices and by the new business models and economy that have started to emerge.

We must think slow.

Pekka Ketola, June 12, 2016

3DSTEP & ideascout. www.3dstep.fi